ﻻ يوجد ملخص باللغة العربية
In this paper we use a gradient flow to deform closed planar curves to curves with least variation of geodesic curvature in the $L^2$ sense. Given a smooth initial curve we show that the solution to the flow exists for all time and, provided the length of the evolving curve remains bounded, smoothly converges to a multiply-covered circle. Moreover, we show that curves in any homotopy class with initially small $L^3lVert k_srVert_2^2$ enjoy a uniform length bound under the flow, yielding the convergence result in these cases.
In this paper we consider the steepest descent $L^2$-gradient flow of the entropy functional. The flow expands convex curves, with the radius of an initial circle growing like the square root of time. Our main result is that, for any initial curve (e
The concept of natural pseudo-distance has proven to be a powerful tool for measuring the dissimilarity between topological spaces endowed with continuous real-valued functions. Roughly speaking, the natural pseudo-distance is defined as the infimum
In this paper, we consider the $L^2$-gradient flow for the modified $p$-elastic energy defined on planar closed curves. We formulate a notion of weak solution for the flow and prove the existence of global-in-time weak solutions with $p ge 2$ for ini
A compact complex manifold $V$ is called Vaisman if it admits an Hermitian metric which is conformal to a Kahler one, and a non-isometric conformal action by $mathbb C$. It is called quasi-regular if the $mathbb C$-action has closed orbits. In this c
Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einsteins field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxe