ترغب بنشر مسار تعليمي؟ اضغط هنا

We employ granular hydrodynamics to investigate a paradigmatic problem of clustering of particles in a freely cooling dilute granular gas. We consider large-scale hydrodynamic motions where the viscosity and heat conduction can be neglected, and one arrives at the equations of ideal gas dynamics with an additional term describing bulk energy losses due to inelastic collisions. We employ Lagrangian coordinates and derive a broad family of exact non-stationary analytical solutions that depend only on one spatial coordinate. These solutions exhibit a new type of singularity, where the gas density blows up in a finite time when starting from smooth initial conditions. The density blowups signal formation of close-packed clusters of particles. As the density blow-up time $t_c$ is approached, the maximum density exhibits a power law $sim (t_c-t)^{-2}$. The velocity gradient blows up as $sim - (t_c-t)^{-1}$ while the velocity itself remains continuous and develops a cusp (rather than a shock discontinuity) at the singularity. The gas temperature vanishes at the singularity, and the singularity follows the isobaric scenario: the gas pressure remains finite and approximately uniform in space and constant in time close to the singularity. An additional exact solution shows that the density blowup, of the same type, may coexist with an ordinary shock, at which the hydrodynamic fields are discontinuous but finite. We confirm stability of the exact solutions with respect to small one-dimensional perturbations by solving the ideal hydrodynamic equations numerically. Furthermore, numerical solutions show that the local features of the density blowup hold universally, independently of details of the initial and boundary conditions.
Suppose that a $d$-dimensional domain is filled with a gas of (in general, interacting) diffusive particles with density $n_0$. A particle is absorbed whenever it reaches the domain boundary. Employing macroscopic fluctuation theory, we evaluate the probability ${mathcal P}$ that no particles are absorbed during a long time $T$. We argue that the most likely gas density profile, conditional on this event, is stationary throughout most of the time $T$. As a result, ${mathcal P}$ decays exponentially with $T$ for a whole class of interacting diffusive gases in any dimension. For $d=1$ the stationary gas density profile and ${mathcal P}$ can be found analytically. In higher dimensions we focus on the simple symmetric exclusion process (SSEP) and show that $-ln {mathcal P}simeq D_0TL^{d-2} ,s(n_0)$, where $D_0$ is the gas diffusivity, and $L$ is the linear size of the system. We calculate the rescaled action $s(n_0)$ for $d=1$, for rectangular domains in $d=2$, and for spherical domains. Near close packing of the SSEP $s(n_0)$ can be found analytically for domains of any shape and in any dimension.
We study the dynamics of colonization of a territory by a stochastic population at low immigration pressure. We assume a sufficiently strong Allee effect that introduces, in deterministic theory, a large critical population size for colonization. At low immigration rates, the average pre-colonization population size is small thus invalidating the WKB approximation to the master equation. We circumvent this difficulty by deriving an exact zero-flux solution of the master equation and matching it with an approximate non-zero-flux solution of the pertinent Fokker-Planck equation in a small region around the critical population size. This procedure provides an accurate evaluation of the quasi-stationary probability distribution of population sizes in the pre-colonization state, and of the mean time to colonization, for a wide range of immigration rates. At sufficiently high immigration rates our results agree with WKB results obtained previously. At low immigration rates the results can be very different.
We develop a new perturbation method for studying quasi-neutral competition in a broad class of stochastic competition models, and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain gener alization of the stochastic Susceptible-Infected-Susceptible (SIS) model. Here we extend previous results due to Parsons and Quince (2007), Parsons et al (2008) and Lin, Kim and Doering (2012). The second model, a two-strain generalization of the stochastic Susceptible-Infected-Recovered (SIR) model with population turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of the two strains are identical, a system with an infinite population size approaches a point on the deterministic coexistence line (CL): a straight line of fixed points in the phase space of sub-population sizes. Shot noise drives one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the sub-populations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for mathematically typical initial conditions, it is the fast strain that is more likely to win in the important situation when a few infectives of both strains are introduced into a susceptible population.
The position of a reaction front, propagating into a metastable state, fluctuates because of the shot noise of reactions and diffusion. A recent theory [B. Meerson, P.V. Sasorov, and Y. Kaplan, Phys. Rev. E 84, 011147 (2011)] gave a closed analytic e xpression for the front diffusion coefficient in the weak noise limit. Here we test this theory in stochastic simulations involving reacting and diffusing particles on a one-dimensional lattice. We also investigate a small noise-induced systematic shift of the front velocity compared to the prediction from the spatially continuous deterministic reaction-diffusion equation.
Many populations in nature are fragmented: they consist of local populations occupying separate patches. A local population is prone to extinction due to the shot noise of birth and death processes. A migrating population from another patch can drama tically delay the extinction. What is the optimal migration rate that minimizes the extinction risk of the whole population? Here we answer this question for a connected network of model habitat patches with different carrying capacities.
Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic model ing of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical pre-factor of order unity, this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical pre-factor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا