ترغب بنشر مسار تعليمي؟ اضغط هنا

We revisit a simple model that combines minimal gauge mediation and the next-to-minimal supersymmetric standard model. We show that one can obtain a 125 GeV Standard Model-like Higgs boson with stops as light as 1.1 TeV, thanks to the mixing of the H iggs with a singlet state at O(90-100) GeV. Sparticle searches at the LHC may come with additional b-jets or taus and may involve displaced vertices. The sparticle production cross-section at the 13 TeV LHC can be O(10-100) fb, leading to great prospects for discovery in the early phase of LHC Run II.
Recent CMS searches for di-leptoquark production report local excesses of 2.4$sigma$ in a $eejj$ channel and 2.6$sigma$ in a $ejj$ missing $p_T$ channel. Here, we simultaneously explain both excesses with resonant slepton production in ${mathcal R}-$ parity violating supersymmetry (SUSY). We consider resonant slepton production, which decays to a lepton and a chargino/neutralino, followed by three-body decays of the neutralino/chargino via an $mathcal{R}-$parity violating coupling. There are regions of parameter space which are also compatible at the 95% confidence level (CL) with a 2.8$sigma$ $eejj$ excess in a recent CMS $W_R$ search, while being compatible with other direct search constraints. Phase-II of the GERDA neutrinoless double beta decay ($0 ubetabeta$) experiment will probe a sizeable portion of the good-fit region.
56 - B.C. Allanach 2014
Weak-scale supersymmetry is a well motivated, if speculative, theory beyond the Standard Model of particle physics. It solves the thorny issue of the Higgs mass, namely: how can it be stable to quantum corrections, when they are expected to be $10^{1 5}$ times bigger than its mass? The experimental signal of the theory is the production and measurement of supersymmetric particles in the Large Hadron Collider experiments. No such particles have been seen to date, but hopes are high for the impending run in 2015. Searches for supersymmetric particles can be difficult to interpret. Here, we shall discuss the fact that, even given a well defined model of supersymmetry breaking with few parameters, there can be multiple solutions. These multiple solutions are physically different, and could potentially mean that points in parameter space have been ruled out by interpretations of LHC data when they shouldnt have been. We shall review the multiple solutions and illustrate their existence in a universal model of supersymmetry breaking.
Recent ATLAS data significantly extend the exclusion limits for supersymmetric particles. We examine the impact of such data on global fits of the constrained minimal supersymmetric standard model (CMSSM) to indirect and cosmological data. We calcula te the likelihood map of the ATLAS search, taking into account systematic errors on the signal and on the background. We validate our calculation against the ATLAS determinaton of 95% confidence level exclusion contours. A previous CMSSM global fit is then re-weighted by the likelihood map, which takes a bite at the high probability density region of the global fit, pushing scalar and gaugino masses up.
We study squark flavour violation in the anomaly mediated supersymmetry broken (AMSB) minimal supersymmetric standard model. Analytical expressions for the three-generational squark mass matrices are derived. We show that the anomaly-induced soft bre aking terms have a decreasing amount of squark flavour violation when running from the GUT to the weak scale. Taking into account inter-generational squark mixing, we work out non-trivial constraints from B -> Xs gamma and Bs -> mu mu, which complement each other, as well as B -> tau nu decays. We further identify a region of parameter space where the anomalous magnetic moment of the muon and the B -> Xs gamma branching ratio are simultaneously accommodated. Since anomaly mediation is of the minimal flavour-violating type, the generic flavour predictions for this class of models apply, including a CKM-induced (and hence small) Bs-Bsbar-mixing phase.
With sufficient data, Large Hadron Collider (LHC) experiments can constrain the selectron-smuon mass splitting through differences in the di-electron and di-muon edges from supersymmetry (SUSY) cascade decays. We study the sensitivity of the LHC to t his mass splitting, which within mSUGRA may be constrained down to O(10^{-4}) for 30 fb^{-1} of integrated luminosity. Over substantial regions of SUSY breaking parameter space the fractional edge splitting can be significantly enhanced over the fractional mass splitting. Within models where the selectron and smuon are constrained to be universal at a high scale, edge splittings up to a few percent may be induced by renormalisation group effects and may be significantly discriminated from zero. The edge splitting provides important information about high-scale SUSY breaking terms and should be included in any fit of LHC data to high-scale models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا