ترغب بنشر مسار تعليمي؟ اضغط هنا

Light Sparticles from a Light Singlet in Gauge Mediation

70   0   0.0 ( 0 )
 نشر من قبل Ben Allanach PhD
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit a simple model that combines minimal gauge mediation and the next-to-minimal supersymmetric standard model. We show that one can obtain a 125 GeV Standard Model-like Higgs boson with stops as light as 1.1 TeV, thanks to the mixing of the Higgs with a singlet state at O(90-100) GeV. Sparticle searches at the LHC may come with additional b-jets or taus and may involve displaced vertices. The sparticle production cross-section at the 13 TeV LHC can be O(10-100) fb, leading to great prospects for discovery in the early phase of LHC Run II.


قيم البحث

اقرأ أيضاً

We point out that light gauge boson mediators could induce new interference effects in neutrino-electron scattering that can be used to enhance the sensitivity of neutrino-flavor-selective high-intensity neutrino experiments, such as DUNE. We particu larly emphasize a destructive interference effect, leading to a deficit between the Standard Model expectation and the experimental measurement of the differential cross-sections, which is prominent only in either the neutrino or the antineutrino mode, depending on the mediator couplings. Therefore, the individual neutrino (or antineutrino) mode could allow for sensitivity reaches superior to the combined analysis, and moreover, could distinguish between different types of gauge boson mediators.
Natural models of supersymmetry with a gravitino LSP provide distinctive signatures at the LHC. For a neutralino NLSP, sparticles can decay to two high energy photons plus missing energy. We use the ATLAS diphoton search with 4.8 fb^{-1} of data to p lace limits in both the stop-gluino and neutralino-chargino mass planes for this scenario. If the neutralino is heavier than 50 GeV, the lightest stop must be heavier than 580 GeV, the gluino heavier than 1100 GeV and charginos must be heavier than approximately 300-470 GeV. This provides the first nontrivial constraints in natural gauge mediation models with a neutralino NLSP decaying to photons, and implies a fine tuning of at least a few percent in such models.
Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge mediat ed models. We discuss some of the challenges of building models of General Gauge Mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.
147 - K. Benakli , M. D. Goodsell 2010
We extend the formulation by Meade, Seiberg and Shih of general gauge mediation of supersymmetry breaking to include Dirac masses for the gauginos. These appear through mixing of the visible sector gauginos with additional states in adjoint represent ations. We illustrate the method by reproducing the existing results in the literature for the gaugino and sfermion masses when preserving R-symmetry. We then explain how the generation of same sign masses for the two propagating degrees of freedom in the adjoint scalars can be achieved. We end by commenting on the use of the formalism for describing U(1) mixing.
We consider a simple setup with light squarks which is free from the gravitino and SUSY flavor problems. In our setup, a SUSY breaking sector is sequestered from the matter and gauge sectors, and it only couples to the Higgs sector directly with $mat hcal{O}(100),$TeV gravitino. Resulting mass spectra of sfermions are split: the first and second generation sfermions are light as $mathcal{O}(1),$TeV while the third generation sfermions are heavy as $mathcal{O}(10),$TeV. The light squarks of $mathcal{O}(1),$TeV can be searched at the (high-luminosity) LHC and future collider experiments. Our scenario can naturally avoid too large flavor-changing neutral currents and it is consistent with the $epsilon_K$ constraint. Moreover, there are regions explaining the muon $g-2$ anomaly and bottom-tau/top-bottom-tau Yukawa coupling unification simultaneously.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا