ترغب بنشر مسار تعليمي؟ اضغط هنا

99 - A. Korver , R. Wyllie , B. Lancor 2013
We demonstrate that spin-exchange dephasing of Larmor precession at near-earth-scale fields is effectively eliminated by dressing the alkali-metal atom spins in a sequence of AC-coupled 2-pi pulses, repeated at the Larmor precession frequency. The co ntribution of spin-exchange collisions to the spectroscopic line width is reduced by a factor of the duty cycle of the pulses. We experimentally demonstrate resonant transverse pumping in magnetic fields as high as 0.1 Gauss, present experimental measurements of the suppressed spin-exchange relaxation, and show enhanced magnetometer response relative to a light-narrowed scalar magnetometer.
99 - B. Lancor , T. G. Walker 2010
We consider the degree of conservation of nuclear spin polarization in the process of optical pumping under typical spin-exchange optical pumping conditions. Previous analyses have assumed that negligible nuclear spin precession occurs in the brief p eriods of time the alkali-metal atoms are in the excited state after absorbing photons and before undergoing quenching collisions with nitrogen molecules. We include excited-state hyperfine interactions, electronic spin relaxation in collisions with He and N_2, spontaneous emission, quenching collisions, and a simplified treatment of radiation trapping.
We present measurements of the circular dichroism of optically pumped Rb vapor near the D1 resonance line. Collisions with the buffer gases $^3$He and N$_2$ reduce the transparency of the vapor, even when fully polarized. We use two methods to measur e this effect, show that the He results can be understood from RbHe potential curves, and show how this effect conspires with the spectral profile of the optical pumping light to increase the laser power demands for optical pumping of very optically thick samples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا