ترغب بنشر مسار تعليمي؟ اضغط هنا

130 - Jen-Tsung Hsiang , B. L. Hu 2020
A definition of nonequilibrium free energy $mathcal{F}_{textsc{s}}$ is proposed for dynamical Gaussian quantum open systems strongly coupled to a heat bath and a formal derivation is provided by way of the generating functional in terms of the coarse -grained effective action and the influence action. For Gaussian open quantum systems exemplified by the quantum Brownian motion model studied here, a time-varying effective temperature can be introduced in a natural way, and with it, the nonequilibrium free energy $mathcal{F}_{textsc{s}}$, von Neumann entropy $mathcal{S}_{vN}$ and internal energy $mathcal{U}_{textsc{s}}$ of the reduced system ($S$) can be defined accordingly. In contrast to the nonequilibrium free energy found in the literature which references the bath temperature, the nonequilibrium thermodynamic functions we find here obey the familiar relation $mathcal{F}_{textsc{s}}(t)=mathcal{U}_{textsc{s}}(t)- T_{textsc{eff}} (t),mathcal{S}_{vN}(t)$ {it at any and all moments of time} in the systems fully nonequilibrium evolution history. After the system equilibrates they coincide, in the weak coupling limit, with their counterparts in conventional equilibrium thermodynamics. Since the effective temperature captures both the state of the system and its interaction with the bath, upon the systems equilibration, it approaches a value slightly higher than the initial bath temperature. Notably, it remains nonzero for a zero-temperature bath, signaling the existence of system-bath entanglement. Reasonably, at high bath temperatures and under ultra-weak couplings, it becomes indistinguishable from the bath temperature. The nonequilibrium thermodynamic functions and relations discovered here for dynamical Gaussian quantum systems should open up useful pathways toward establishing meaningful theories of nonequilibrium quantum thermodynamics.
In this note we show that Newton-Schrodinger Equations (NSEs) [arXiv:1210.0457 and references therein] do not follow from general relativity (GR) and quantum field theory (QFT) by way of two considerations: 1) Taking the nonrelativistic limit of the semiclassical Einstein equation, the central equation of relativistic semiclassical gravity, a fully covariant theory based on GR+QFT with self-consistent backreaction of quantum matter on the spacetime dynamics; 2) Working out a model [see C. Anastopoulos and B. L. Hu, Class. Quant. Grav. 30, 165007 (2013), arXiv:1305.5231] with a matter scalar field interacting with weak gravity, in procedures analogous to the derivation of the nonrelativistic limit of quantum electrodynamics. We conclude that the coupling of classical gravity with quantum matter can only be via mean fields, there are no $N$-particle NSEs and theories based on Newton-Schrodinger equations assume unknown physics.
80 - C. H. Fleming , B. L. Hu 2011
We treat several key stochastic equations for non-Markovian open quantum system dynamics and present a formalism for finding solutions to them via canonical perturbation theory, without making the Born-Markov or rotating wave approximations (RWA). Th is includes master equations of the (asymptotically) stationary, periodic, and time-nonlocal type. We provide proofs on the validity and meaningfulness of the late-time perturbative master equation and on the preservation of complete positivity despite a general lack of Lindblad form. More specifically, we show how the algebraic generators satisfy the theorem of Lindblad and Gorini, Kossakowski and Sudarshan, even though the dynamical generators do not. These proofs ensure the mathematical viability and physical soundness of solutions to non-Markovian processes. Within the same formalism we also expand upon known results for non-Markovian corrections to the quantum regression theorem. Several directions where these results can be usefully applied to are also described, including the analysis of near-resonant systems where the RWA is inapplicable and the calculation of the reduced equilibrium state of open systems.
We solve the model of N quantum Brownian oscillators linearly coupled to an environment of quantum oscillators at finite temperature, with no extra assumptions about the structure of the system-environment coupling. Using a compact phase-space formal ism, we give a rather quick and direct derivation of the master equation and its solutions for general spectral functions and arbitrary temperatures. Since our framework is intrinsically nonperturbative, we are able to analyze the entanglement dynamics of two oscillators coupled to a common scalar field in previously unexplored regimes, such as off resonance and strong coupling.
We derive from a microscopic Hamiltonian a set of stochastic equations of motion for a system of spinless charged particles in an electromagnetic (EM) field based on a consistent application of a dimensionful 1/c expansion of quantum electrodynamics (QED). All relativistic corrections up to order 1/c^3 are captured by the dynamics, which includes electrostatic interactions (Coulomb), magnetostatic backreaction (Biot-Savart), dissipative backreaction (Abraham-Lorentz) and quantum field fluctuations at zero and finite temperatures. With self-consistent backreaction of the EM field included we show that this approach yields causal and runaway-free equations of motion, provides new insights into charged particle backreaction, and naturally leads to equations consistent with the (classical) Darwin Hamiltonian and has quantum operator ordering consistent with the Breit Hamiltonian. To order 1/c^3 the approach leads to a nonstandard mass renormalization which is associated with magnetostatic self-interactions, and no cutoff is required to prevent runaways. Our new results also show that the pathologies of the standard Abraham-Lorentz equations can be seen as a consequence of applying an inconsistent (i.e. incomplete, mixed-order) expansion in 1/c, if, from the start, the analysis is viewed as generating a low-energy effective theory rather than an exact solution. Finally, we show that the 1/c expansion within a Hamiltonian framework yields well-behaved noise and dissipation, in addition to the multiple-particle interactions.
The dependence of the dynamics of open quantum systems upon initial correlations between the system and environment is an utterly important yet poorly understood subject. For technical convenience most prior studies assume factorizable initial states where the system and its environments are uncorrelated, but these conditions are not very realistic and give rise to peculiar behaviors. One distinct feature is the rapid build up or a sudden jolt of physical quantities immediately after the system is brought in contact with its environments. The ultimate cause of this is an initial imbalance between system-environment correlations and coupling. In this note we demonstrate explicitly how to avoid these unphysical behaviors by proper adjustments of correlations and/or the coupling, for setups of both theoretical and experimental interest. We provide simple analytical results in terms of quantities that appear in linear (as opposed to affine) master equations derived for factorized initial states.
The fluctuation-dissipation relation is usually formulated for a system interacting with a heat bath at finite temperature in the context of linear response theory, where only small deviations from the mean are considered. We show that for an open qu antum system interacting with a non-equilibrium environment, where temperature is no longer a valid notion, a fluctuation-dissipation inequality exists. Clearly stated, quantum fluctuations are bounded below by quantum dissipation, whereas classically the fluctuations can be made to vanish. The lower bound of this inequality is exactly satisfied by (zero-temperature) quantum noise and is in accord with the Heisenberg uncertainty principle, both in its microscopic origins and its influence upon systems. Moreover, it is shown that the non-equilibrium fluctuation-dissipation relation determines the non-equilibrium uncertainty relation in the weak-damping limit.
It is known that one can characterize the decoherence strength of a Markovian environment by the product of its temperature and induced damping, and order the decoherence strength of multiple environments by this quantity. We show that for non-Markov ian environments in the weak coupling regime there also exists a natural (albeit partial) ordering of environment-induced irreversibility within a perturbative treatment. This measure can be applied to both low-temperature and non-equilibrium environments.
We study the non-equilibrium dynamics of a pair of qubits made of two-level atoms separated in space with distance $r$ and interacting with one common electromagnetic field but not directly with each other. Our calculation makes a weak coupling assum ption but no Born or Markov approximation. We write the evolution equations of the reduced density matrix of the two-qubit system after integrating out the electromagnetic field modes. We study two classes of states in detail: Class A is a one parameter family of states which are the superposition of the highest energy and lowest energy states, and Class B states which are the linear combinations of the symmetric and the antisymmetric Bell states. Our results for an initial Bell state are similar to those obtained before for the same model derived under the Born-Markov approximation. However, in the Class A states the behavior is qualitatively different: under the non-Markovian evolution we do not see sudden death of quantum entanglement and subsequent revivals, except when the qubits are sufficiently far apart. We provide explanations for such differences of behavior both between these two classes of states and between the predictions from the Markov and non-Markovian dynamics. We also study the decoherence of this two-qubit system.
We address two basic issues in the theory of galaxy formation from fluctuations of quantum fields: 1) the nature and origin of noise and fluctuations and 2) the conditions for using a classical stochastic equation for their description. On the first issue, we derive the influence functional for a $lambda phi^4 $ field in a zero-temperature bath in de Sitter universe and obtain the correlator for the colored noises of vacuum fluctuations. This exemplifies a new mechanism we propose for colored noise generation which can act as seeds for galaxy formation with non-Gaussian distributions. For the second issue, we present a (functional) master equation for the inflaton field in de Sitter universe. By examining the form of the noise kernel we study the decoherence of the long-wavelength sector and the conditions for it to behave classically.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا