ﻻ يوجد ملخص باللغة العربية
It is known that one can characterize the decoherence strength of a Markovian environment by the product of its temperature and induced damping, and order the decoherence strength of multiple environments by this quantity. We show that for non-Markovian environments in the weak coupling regime there also exists a natural (albeit partial) ordering of environment-induced irreversibility within a perturbative treatment. This measure can be applied to both low-temperature and non-equilibrium environments.
We microscopically model the decoherence dynamics of entangled coherent states under the influence of vacuum fluctuation. We derive an exact master equation with time-dependent coefficients reflecting the memory effect of the environment, by using th
Simulating complex processes can be intractable when memory effects are present, often necessitating approximations in the length or strength of the memory. However, quantum processes display distinct memory effects when probed differently, precludin
We consider four two-level atoms interacting with independent non-Markovian reservoirs with detuning. We mainly investigate the effects of the detuning and the length of the reservoir correlation time on the decoherence dynamics of the multipartite e
Non-Markovian effects are important in modeling the behavior of open quantum systems arising in solid-state physics, quantum optics as well as in study of biological and chemical systems. A common approach to the analysis of such systems is to approx
We study the effect of an ancillary system on the quantum speed limit time in different non-Markovian environments. Through employing an ancillary system coupled with the quantum system of interest via hopping interaction and investigating the cases