ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical quantum communication utilizing satellite platforms has the potential to extend the reach of quantum key distribution (QKD) from terrestrial limits of ~200 km to global scales. We have developed a thorough numerical simulation using realistic simulated orbits and incorporating the effects of pointing error, diffraction, atmosphere and telescope design, to obtain estimates of the loss and background noise which a satellite-based system would experience. Combining with quantum optics simulations of sources and detection, we determine the length of secure key for QKD, as well as entanglement visibility and achievable distances for fundamental experiments. We analyze the performance of a low Earth orbit (LEO) satellite for downlink and uplink scenarios of the quantum optical signals. We argue that the advantages of locating the quantum source on the ground justify a greater scientific interest in an uplink as compared to a downlink. An uplink with a ground transmitter of at least 25 cm diameter and a 30 cm receiver telescope on the satellite could be used to successfully perform QKD multiple times per week with either an entangled photon source or with a weak coherent pulse source, as well as perform long-distance Bell tests and quantum teleportation. Our model helps to resolve important design considerations such as operating wavelength, type and specifications of sources and detectors, telescope designs, specific orbits and ground station locations, in view of anticipated overall system performance.
We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies $N$, and in the asymptotic limit as $N rightarrow infty$. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here, adaptive measurements are those for which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite $N$) and scaling of this error in the asymptotic limit. In the asymptotic limit, adaptive schemes have no advantage over the optimal fixed local scheme, and except for states with less than 2% mixture, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme. For finite $N$, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme, for any degree of mixture.
We derive, and experimentally demonstrate, an interferometric scheme for unambiguous phase estimation with precision scaling at the Heisenberg limit that does not require adaptive measurements. That is, with no prior knowledge of the phase, we can ob tain an estimate of the phase with a standard deviation that is only a small constant factor larger than the minimum physically allowed value. Our scheme resolves the phase ambiguity that exists when multiple passes through a phase shift, or NOON states, are used to obtain improved phase resolution. Like a recently introduced adaptive technique [Higgins et al 2007 Nature 450 393], our experiment uses multiple applications of the phase shift on single photons. By not requiring adaptive measurements, but rather using a predetermined measurement sequence, the present scheme is both conceptually simpler and significantly easier to implement. Additionally, we demonstrate a simplified adaptive scheme that also surpasses the standard quantum limit for single passes.
The high-precision interferometric measurement of an unknown phase is the basis for metrology in many areas of science and technology. Quantum entanglement provides an increase in sensitivity, but present techniques have only surpassed the limits of classical interferometry for the measurement of small variations about a known phase. Here we introduce a technique that combines entangled states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining more information per photon that is possible classically. We use the technique to make the first ab initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise determination of unknown phase shifts using interferometry.
We present theory and experiment for the task of discriminating two nonorthogonal states, given multiple copies. We implement several local measurement schemes, on both pure states and states mixed by depolarizing noise. We find that schemes which ar e optimal (or have optimal scaling) without noise perform worse with noise than simply repeating the optimal single-copy measurement. Applying optimal control theory, we derive the globally optimal local measurement strategy, which outperforms all other local schemes, and experimentally implement it for various levels of noise.
We present the theory of how to achieve phase measurements with the minimum possible variance in ways that are readily implementable with current experimental techniques. Measurements whose statistics have high-frequency fringes, such as those obtain ed from NOON states, have commensurately high information yield. However this information is also highly ambiguous because it does not distinguish between phases at the same point on different fringes. We provide schemes to eliminate this phase ambiguity in a highly efficient way, providing phase estimates with uncertainty that is within a small constant factor of the Heisenberg limit, the minimum allowed by the laws of quantum mechanics. These techniques apply to NOON state and multi-pass interferometry, as well as phase measurements in quantum computing. We have reported the experimental implementation of some of these schemes with multi-pass interferometry elsewhere. Here we present the theoretical foundation, and also present some new experimental results. There are three key innovations to the theory in this paper. First, we examine the intrinsic phase properties of the sequence of states (in multiple time modes) via the equivalent two-mode state. Second, we identify the key feature of the equivalent state that enables the optimal scaling of the intrinsic phase uncertainty to be obtained. This enables us to identify appropriate combinations of states to use. The remaining difficulty is that the ideal phase measurements to achieve this intrinic phase uncertainty are often not physically realizable. The third innovation is to solve this problem by using realizable measurements that closely approximate the optimal measurements, enabling the optimal scaling to be preserved.
Measurement underpins all quantitative science. A key example is the measurement of optical phase, used in length metrology and many other applications. Advances in precision measurement have consistently led to important scientific discoveries. At t he fundamental level, measurement precision is limited by the number N of quantum resources (such as photons) that are used. Standard measurement schemes, using each resource independently, lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard quantum limit. However, it has long been conjectured that it should be possible to achieve a precision limited only by the Heisenberg uncertainty principle, dramatically improving the scaling to 1/N. It is commonly thought that achieving this improvement requires the use of exotic quantum entangled states, such as the NOON state. These states are extremely difficult to generate. Measurement schemes with counted photons or ions have been performed with N <= 6, but few have surpassed the standard quantum limit and none have shown Heisenberg-limited scaling. Here we demonstrate experimentally a Heisenberg-limited phase estimation procedure. We replace entangled input states with multiple applications of the phase shift on unentangled single-photon states. We generalize Kitaevs phase estimation algorithm using adaptive measurement theory to achieve a standard deviation scaling at the Heisenberg limit. For the largest number of resources used (N = 378), we estimate an unknown phase with a variance more than 10 dB below the standard quantum limit; achieving this variance would require more than 4,000 resources using standard interferometry. Our results represent a drastic reduction in the complexity of achieving quantum-enhanced measurement precision.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا