ترغب بنشر مسار تعليمي؟ اضغط هنا

How to perform the most accurate possible phase measurements

55   0   0.0 ( 0 )
 نشر من قبل Dominic William Berry
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the theory of how to achieve phase measurements with the minimum possible variance in ways that are readily implementable with current experimental techniques. Measurements whose statistics have high-frequency fringes, such as those obtained from NOON states, have commensurately high information yield. However this information is also highly ambiguous because it does not distinguish between phases at the same point on different fringes. We provide schemes to eliminate this phase ambiguity in a highly efficient way, providing phase estimates with uncertainty that is within a small constant factor of the Heisenberg limit, the minimum allowed by the laws of quantum mechanics. These techniques apply to NOON state and multi-pass interferometry, as well as phase measurements in quantum computing. We have reported the experimental implementation of some of these schemes with multi-pass interferometry elsewhere. Here we present the theoretical foundation, and also present some new experimental results. There are three key innovations to the theory in this paper. First, we examine the intrinsic phase properties of the sequence of states (in multiple time modes) via the equivalent two-mode state. Second, we identify the key feature of the equivalent state that enables the optimal scaling of the intrinsic phase uncertainty to be obtained. This enables us to identify appropriate combinations of states to use. The remaining difficulty is that the ideal phase measurements to achieve this intrinic phase uncertainty are often not physically realizable. The third innovation is to solve this problem by using realizable measurements that closely approximate the optimal measurements, enabling the optimal scaling to be preserved.

قيم البحث

اقرأ أيضاً

Recently it was reported that the spin-coherent state (SCS) positive-operator-valued measure (POVM) can be performed for any spin system by continuous isotropic measurement of the three total spin components [E. Shojaee, C. S. Jackson, C. A. Riofrio, A. Kalev, and I. H. Deutsch, Phys. Rev. Lett. 121, 130404 (2018)]. The outcome probability distribution of the SCS POVM for an input quantum state is the generalized $Q$-function, which is defined on the 2-sphere phase space of SCSs. This article develops the theoretical details of the continuous isotropic measurement and places it within the general context of applying curved-phase-space correspondences to quantum systems, indicating their experimental utility by explaining how to analyze this measurements performance. The analysis is in terms of the Kraus operators that develop over the course of a continuous isotropic measurement. The Kraus operators represent elements of the Lie group $mathrm{SL}(2,mathbb{C})$, a complex version of the usual unitary operators that represent elements of $mathrm{SU}(2)$. Consequently, the associated POVM elements represent points in the 3-hyperboloid $mathrm{SU}(2)backslashmathrm{SL}(2,mathbb{C})$. Three equivalent stochastic techniques, path integral, diffusion (Fokker-Planck) equation, and stochastic differential equations, are applied to show that the POVM quickly limits to the SCS POVM. We apply two basic mathematical tools to the Kraus operators, the Maurer-Cartan form, modified for stochastic applications, and the Cartan decomposition associated with the symmetric pair $mathrm{SU}(2)subsetmathrm{SL}(2,mathbb{C})$. Informed by these tools, the three stochastic techniques are applied directly to the Kraus operators in a representation independent, and thus geometric, way (independent of any spectral information about the spin components).
From a practical perspective it is advantageous to develop experimental methods that verify entanglement in quantum states with as few measurements as possible. In this paper we investigate the minimal number of measurements needed to detect bound en tanglement in bipartite $(dtimes d)$-dimensional states, i.e. entangled states that are positive under partial transposition. In particular, we show that a class of entanglement witnesses composed of mutually unbiased bases (MUBs) can detect bound entanglement if the number of measurements is greater than $d/2+1$. This is a substantial improvement over other detection methods, requiring significantly fewer resources than either full quantum state tomography or measuring a complete set of $d+1$ MUBs. Our approach is based on a partial characterisation of the (non-)decomposability of entanglement witnesses. We show that non-decomposability is a universal property of MUBs, which holds regardless of the choice of complementary observables, and we find that both the number of measurements and the structure of the witness play an important role in the detection of bound entanglement.
We address the problem of characterizing the steerability of quantum states under restrictive measurement scenarios, i.e., the problem of determining whether a quantum state can demonstrate steering when subjected to $N$ measurements of $k$ outcomes. We consider the cases of either general positive operator-valued measures (POVMs) or specific kinds of measurements (e.g., projective or symmetric). We propose general methods to calculate lower and upper bounds for the white-noise robustness of a $d$-dimensional quantum state under different measurement scenarios that are also applicable to the study of the noise robustness of the incompatibility of sets of unknown qudit measurements. We show that some mutually unbiased bases, symmetric informationally complete measurements, and other symmetric choices of measurements are not optimal for steering isotropic states and provide candidates to the most incompatible sets of measurements in each case. Finally, we provide numerical evidence that nonprojective POVMs do not improve over projective ones for this task.
Structural physical approximation (SPA) has been exploited to approximate non-physical operation such as partial transpose. It has already been studied in the context of detection of entanglement and found that if the minimum eigenvalue of SPA to par tial transpose is less than $frac{2}{9}$ then the two-qubit state is entangled. We find application of SPA to partial transpose in the estimation of optimal singlet fraction. We show that optimal singlet fraction can be expressed in terms of minimum eigenvalue of SPA to partial transpose. We also show that optimal singlet fraction can be realized using Hong-Ou-Mandel interferometry with only two detectors. Further we have shown that the generated hybrid entangled state between a qubit and a binary coherent state can be used as a resource state in quantum teleportation.
47 - Matteo G. Pozzi 2020
Qubit routing refers to the task of modifying quantum circuits so that they satisfy the connectivity constraints of a target quantum computer. This involves inserting SWAP gates into the circuit so that the logical gates only ever occur between adjac ent physical qubits. The goal is to minimise the circuit depth added by the SWAP gates. In this paper, we propose a qubit routing procedure that uses a modified version of the deep Q-learning paradigm. The system is able to outperform the qubit routing procedures from two of the most advanced quantum compilers currently available, on both random and realistic circuits, across near-term architecture sizes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا