ترغب بنشر مسار تعليمي؟ اضغط هنا

We report measurements of the optical response of polycrystalline DyN thin films. The frequency-dependent complex refractive index in the near IR-visible-near UV was determined by fitting reflection/transmission spectra. In conjunction with resistivi ty measurements these identify DyN as a semiconductor with 1.2 eV optical gap. When doped by nitrogen vacancies it shows free carrier absorption and a blue-shifted gap associated with the Moss-Burstein effect. The refractive index of 2.0+/-0.1 depends only weakly on energy. Far infrared reflectivity data show a polar phonon of frequency 280 cm-1 and dielectric strength delta epsilon= 20.
A major challenge for the next generation of spintronics devices is the implementation of ferromagnetic-semiconductor thin films as spin injectors and detectors. Spin-polarised carrier injection cannot be accomplished efficiently from metals, and cou pled with the rarity of intrinsic ferromagnetic semiconductors this has driven intensive study of diluted magnetic semiconductors. Chief among these is the doped III-V compound (Ga,Mn)As. These materials suffer from a number of drawbacks; they (i) require magnetic-ion doping well above the solubility limit, and (ii) must be hole doped to above the degenerate limit, preventing independent control of the carrier concentration and charge sign. Here we demonstrate the first epitaxial growth of a recently-characterised intrinsic ferromagnetic semiconductor, GdN, on silicon substrates, providing an essential step on the way to integrate new spintronics functionalities into Si-based technology. The films have been characterised as regards their growth toward fully relaxed GdN, the density and mobility of their carriers, and their magnetic behaviour.
104 - C. Meyer , B. J. Ruck , J. Zhong 2008
The magnetic behaviour of SmN has been investigated in stoichiometric polycrystalline films. All samples show ferromagnetic order with Curie temperature (T_c) of 27 +/- 3 K, evidenced by the occurrence of hysteresis below T_c. The ferromagnetic state is characterised by a very small moment and a large coercive field, exceeding even the maximum applied field of 6 T below about 15 K. The residual magnetisation at 2 K, measured after cooling in the maximum field, is 0.035 mu_B per Sm. Such a remarkably small moment results from a near cancellation of the spin and orbital contributions for Sm3+ in SmN. Coupling to an applied field is therefore weak, explaining the huge coercive field . The susceptibility in the paramagnetic phase shows temperature-independent Van Vleck and Curie-Weiss contributions. The Van Vleck contribution is in quantitative agreement with the field-induced admixture of the J=7/2 excited state and the 5/2 ground state. The Curie-Weiss contribution returns a Curie temperature that agrees with the onset of ferromagnetic hysteresis, and a conventional paramagnetic moment with an effective moment of 0.4 mu_B per Sm ion, in agreement with expectations for the crystal-field modified effective moment on the Sm3+ ions.
Soft x-ray emission and absorption spectroscopy of the O K-edge are employed to investigate the electronic structure of wurtzite ZnO(0001). A quasiparticle band structure calculated within the GW approximation agrees well with the data, most notably with the energetic location of the Zn3d - O2p hybridized state and the anisotropy of the absorption spectra. Dispersion in the band structure is mapped using the coherent k-selective part of the resonant x-ray emission spectra. We show that a more extensive mapping of the bands is possible in the case of crystalline anisotropy such as that found in ZnO.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا