ﻻ يوجد ملخص باللغة العربية
The magnetic behaviour of SmN has been investigated in stoichiometric polycrystalline films. All samples show ferromagnetic order with Curie temperature (T_c) of 27 +/- 3 K, evidenced by the occurrence of hysteresis below T_c. The ferromagnetic state is characterised by a very small moment and a large coercive field, exceeding even the maximum applied field of 6 T below about 15 K. The residual magnetisation at 2 K, measured after cooling in the maximum field, is 0.035 mu_B per Sm. Such a remarkably small moment results from a near cancellation of the spin and orbital contributions for Sm3+ in SmN. Coupling to an applied field is therefore weak, explaining the huge coercive field . The susceptibility in the paramagnetic phase shows temperature-independent Van Vleck and Curie-Weiss contributions. The Van Vleck contribution is in quantitative agreement with the field-induced admixture of the J=7/2 excited state and the 5/2 ground state. The Curie-Weiss contribution returns a Curie temperature that agrees with the onset of ferromagnetic hysteresis, and a conventional paramagnetic moment with an effective moment of 0.4 mu_B per Sm ion, in agreement with expectations for the crystal-field modified effective moment on the Sm3+ ions.
Magnetic semiconductors have attracted interest because of the question of how a magnetic metal can be derived from a paramagnetic insulator. Here our approach is to carrier dope insulating FeSi and we show that the magnetic half-metal which emerges
Narrow-gap higher mobility semiconducting alloys In_{1-x}Mn_{x}Sb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In_{0.98}Mn_{0.02}Sb was detected by the observat
We report results of a muon spin rotation and relaxation ($mu$SR) study of dilute Pd$_{1-x}$Ni$_x$ alloys, with emphasis on Ni concentrations $x =$ 0.0243 and 0.025. These are close to the critical value $x_mathrm{cr}$ for the onset of ferromagnetic
We report a comprehensive study of the paradigmatic quasi-1D compound (TaSe4)2I performed by means of angle-resolved photoemission spectroscopy (ARPES) and first-principles electronic structure calculations. We find it to be a zero-gap semiconductor
The rare-earth nitride ferromagnetic semiconductors owe their varying magnetic properties to the progressive filling of 4f shell across the series. Recent electrical transport measurements on samarium nitride, including the observation of superconduc