ترغب بنشر مسار تعليمي؟ اضغط هنا

The article presents a mapping of the residual strain along the axis of InAs/InSb heterostructured nanowires. Using confocal Raman measurements, we observe a gradual shift in the TO phonon mode along the axis of these nanowires. We attribute the obse rved TO phonon shift to a residual strain arising from the InAs/InSb lattice mismatch. We find that the strain is maximum at the interface and then monotonically relaxes towards the tip of the nanowires. We also analyze the crystal structure of the InSb segment through selected area electron diffraction measurements and electron diffraction tomography on individual nanowires.
An internal field induced resonant intensity enhancement of Raman scattering of phonon excitations in InAs nanowires is reported. The experimental observation is in good agreement with the simulated results for the scattering of light under varying i ncident wavelengths, originating from the enhanced internal electric field in an infinite dielectric cylinder. Our analysis demonstrates the combined effect of the first higher lying direct band gap energy (E1) and the refractive index of the InAs nanowires in the internal field induced resonant Raman scattering. Furthermore, the difference in the relative contribution of electro-optic effect and deformation potential in Raman scattering of nanowires and bulk InAs over a range of excitation energies is discussed by comparing the intensity ratio of their LO and TO phonon modes.
We report a combined electron transmission and Raman spectroscopy study of InAs nanowires. We demonstrate that the temperature dependent behavior of optical phonon energies can be used to determine the relative wurtzite fraction in the InAs nanowires . Furthermore, we propose that the interfacial strain between zincblende and wurtzite phases along the length of the wires manifests in the temperature-evolution of the phonon linewidths. From these studies, temperature-dependent Raman measurements emerge has a non-invasive method to study polytypism in such nanowires.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا