ﻻ يوجد ملخص باللغة العربية
The article presents a mapping of the residual strain along the axis of InAs/InSb heterostructured nanowires. Using confocal Raman measurements, we observe a gradual shift in the TO phonon mode along the axis of these nanowires. We attribute the observed TO phonon shift to a residual strain arising from the InAs/InSb lattice mismatch. We find that the strain is maximum at the interface and then monotonically relaxes towards the tip of the nanowires. We also analyze the crystal structure of the InSb segment through selected area electron diffraction measurements and electron diffraction tomography on individual nanowires.
The combination of core/shell geometry and band gap engineering in nanowire heterostructures can be employed to realize systems with novel transport and optical properties. Here, we report on the growth of InAs/InP/GaAsSb core-dual-shell nanowires by
We report a method for making epitaxial superconducting contacts to semiconducting nanowires. The temperature and gate characteristics demonstrate barrier-free electrical contact, and the properties in the superconducting state are investigated at lo
We report a detailed ab initio study of two superlattice heterostructures, one component of which is a unit cell of CuPt ordered InSb_(0.5)As_(0.5). This alloy part of the heterostructures is a topological semimetal. The other component of each syste
We report the graded electronic band gap along the axis of individual heterostructured WZ-ZB InAs/InSb0.12As0.88 nanowires. Resonance Raman imaging has been exploited to map the axial variation in the second excitation gap energy (E1) at the high sym
Self-assisted growth of InAs nanowires on graphene by molecular beam epitaxy is reported. Nanowires with diameter of ~50 nm and aspect ratio of up to 100 were achieved. The morphological and structural properties of the nanowires were carefully studi