ﻻ يوجد ملخص باللغة العربية
An internal field induced resonant intensity enhancement of Raman scattering of phonon excitations in InAs nanowires is reported. The experimental observation is in good agreement with the simulated results for the scattering of light under varying incident wavelengths, originating from the enhanced internal electric field in an infinite dielectric cylinder. Our analysis demonstrates the combined effect of the first higher lying direct band gap energy (E1) and the refractive index of the InAs nanowires in the internal field induced resonant Raman scattering. Furthermore, the difference in the relative contribution of electro-optic effect and deformation potential in Raman scattering of nanowires and bulk InAs over a range of excitation energies is discussed by comparing the intensity ratio of their LO and TO phonon modes.
We report a combined electron transmission and Raman spectroscopy study of InAs nanowires. We demonstrate that the temperature dependent behavior of optical phonon energies can be used to determine the relative wurtzite fraction in the InAs nanowires
We report a significant and persistent enhancement of the conductivity in free-standing non intentionnaly doped InAs nanowires upon irradiation in ultra high vacuum. Combining four-point probe transport measurements performed on nanowires with differ
The pressure dependent phonon modes of predominant wurtzite InAs nanowires has been investigated in a diamond anvil cell under hydrostatic pressure up to 58 GPa. The TO and LO at Gamma point and other optical phonon frequencies increase linearly whil
The influence of GaN nanowires on the optical and electrical properties of graphene deposited on them was studied using Raman spectroscopy and microwave induced electron transport method. It was found that interaction with the nanowires induces spect
The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are ~4X larger in the nominall