ترغب بنشر مسار تعليمي؟ اضغط هنا

Primordial black holes (PBHs) have been proposed to explain at least a portion of dark matter. Observations have put strong constraints on PBHs in terms of the fraction of dark matter which they can represent, $f_{rm PBH}$, across a wide mass range - - apart from the stellar-mass range of $20M_odotlesssim M_{rm PBH}lesssim 100M_odot$. In this paper, we explore the possibility that such PBHs could serve as point-mass lenses capable of altering the gravitational-wave (GW) signals observed from binary black hole (BBH) mergers along their line-of-sight. We find that careful GW data analysis could verify the existence of such PBHs based on the $fitting~factor$ and odds ratio analyses. When such a lensed GW signal is detected, we expect to be able to measure the redshifted mass of the lens with a relative error $Delta M_{rm PBH}/M_{rm PBH}lesssim0.3$. If no such lensed GW events were detected despite the operation of sensitive GW detectors accumulating large numbers of BBH mergers, it would translate into a stringent constraint of $f_{rm PBH}lesssim 10^{-2}-10^{-5}$ for PBHs with a mass larger than $sim10M_odot$ by the Einstein Telescope after one year of running, and $f_{rm PBH}lesssim 0.2$ for PBHs with mass greater than $sim 50M_odot$ for advanced LIGO after ten years of running.
We report the analysis of the microlensing event OGLE-2018-BLG-0677. A small feature in the light curve of the event leads to the discovery that the lens is a star-planet system. Although there are two degenerate solutions that could not be distingui shed for this event, both lead to a similar planet-host mass ratio. We perform a Bayesian analysis based on a Galactic model to obtain the properties of the system and find that the planet corresponds to a super-Earth/sub-Neptune with a mass $M_{mathrm{planet}} = {3.96}^{+5.88}_{-2.66}mathrm{M_oplus}$. The host star has a mass $ M_{mathrm{host}} = {0.12}^{+0.14}_{-0.08}mathrm{M_odot}$. The projected separation for the inner and outer solutions are ${0.63}^{+0.20}_{-0.17}$~AU and ${0.72}^{+0.23}_{-0.19}$~AU respectively. At $Deltachi^2=chi^2({rm 1L1S})-chi^2({rm 2L1S})=46$, this is by far the lowest $Deltachi^2$ for any securely-detected microlensing planet to date, a feature that is closely connected to the fact that it is detected primarily via a dip rather than a bump.
Intermediate-mass black holes are the missing link that connects stellar-mass to supermassive black holes and are key to understanding galaxy evolution. Gravitational waves, like photons, can be lensed, leading to discernable effects such as diffract ion or repeated signals. We investigate the detectability of intermediate-mass black hole deflectors in the LIGO-Virgo detector network. In particular, we simulate gravitational waves with variable source distributions lensed by an astrophysical population of intermediate-mass black holes, and use standard LIGO tools to infer the properties of these lenses. We find detections of intermediate-mass black holes at $98%$ confidence level over a wide range of binary and lens parameters. Therefore, we conclude that intermediate-mass black holes could be detected through lensing of gravitational waves in the LIGO-Virgo detector network.
Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to reproduce strong lensing systems. First, we analytically explore the lensing properties of the model -- finding that a pure WaveDM density profile, a soliton profile, produces a weaker lensing effect than other similar cored profiles. Then we analyze models with a soliton embedded in an NFW profile, as has been found in numerical simulations of structure formation. We use a benchmark model with a boson mass of $m_a=10^{-22}{rm eV}$, for which we see that there is a bi-modality in the contribution of the external NFW part of the profile, and actually some of the free parameters associated with it are not well constrained. We find that for configurations with boson masses $10^{-23}$ -- $10^{-22}{rm eV}$, a range of masses preferred by dwarf galaxy kinematics, the soliton profile alone can fit the data but its size is incompatible with the luminous extent of the lens galaxies. Likewise, boson masses of the order of $10^{-21}{rm eV}$, which would be consistent with Lyman-$alpha$ constraints and consist of more compact soliton configurations, necessarily require the NFW part in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a conservative lower bound $m_a > 10^{-24}$ and that the NFW envelope around the soliton must be present to satisfy the observational requirements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا