ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering intermediate-mass black hole lenses through gravitational wave lensing

90   0   0.0 ( 0 )
 نشر من قبل Otto Akseli Hannuksela
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intermediate-mass black holes are the missing link that connects stellar-mass to supermassive black holes and are key to understanding galaxy evolution. Gravitational waves, like photons, can be lensed, leading to discernable effects such as diffraction or repeated signals. We investigate the detectability of intermediate-mass black hole deflectors in the LIGO-Virgo detector network. In particular, we simulate gravitational waves with variable source distributions lensed by an astrophysical population of intermediate-mass black holes, and use standard LIGO tools to infer the properties of these lenses. We find detections of intermediate-mass black holes at $98%$ confidence level over a wide range of binary and lens parameters. Therefore, we conclude that intermediate-mass black holes could be detected through lensing of gravitational waves in the LIGO-Virgo detector network.



قيم البحث

اقرأ أيضاً

172 - G. Mazzolo , F. Salemi , M. Drago 2014
We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binarys parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 $text{M}_{odot}$ and mass ratios between $1/6$ and 1$,$. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological scales.
The direct measurement of gravitational waves is a powerful tool for surveying the population of black holes across the universe. The first gravitational wave catalog from LIGO has detected black holes as heavy as $sim50~M_odot$, colliding when our U niverse was about half its current age. However, there is yet no unambiguous evidence of black holes in the intermediate-mass range of $10^{2-5}~M_odot$. Recent electromagnetic observations have hinted at the existence of IMBHs in the local universe; however, their masses are poorly constrained. The likely formation mechanisms of IMBHs are also not understood. Here we make the case that multiband gravitational wave astronomy --specifically, joint observations by space- and ground-based gravitational wave detectors-- will be able to survey a broad population of IMBHs at cosmological distances. By utilizing general relativistic simulations of merging black holes and state-of-the-art gravitational waveform models, we classify three distinct population of binaries with IMBHs in the multiband era and discuss what can be observed about each. Our studies show that multiband observations involving the upgraded LIGO detector and the proposed space-mission LISA would detect the inspiral, merger and ringdown of IMBH binaries out to redshift ~2. Assuming that next-generation detectors, Einstein Telescope, and Cosmic Explorer, are operational during LISAs mission lifetime, we should have multiband detections of IMBH binaries out to redshift ~5. To facilitate studies on multiband IMBH sources, here we investigate the multiband detectability of IMBH binaries. We provide analytic relations for the maximum redshift of multiband detectability, as a function of black hole mass, for various detector combinations. Our study paves the way for future work on what can be learned from IMBH observations in the era of multiband gravitational wave astronomy.
The detection of intermediate-mass black holes (IMBHs) i.e. those with mass $sim 100$-$10^5 M_odot$, is an emerging goal of gravitational-wave (GW) astronomy with wide implications for cosmology and tests of strong-field gravity. Current PyCBC-based searches for compact binary mergers, which matched filter the detector data against a set of template waveforms, have so far detected or confirmed several GW events. However, the sensitivity of these searches to signals arising from mergers of IMBH binaries is not optimal. Here, we present a new optimised PyCBC-based search for such signals. Our search benefits from using a targeted template bank, stricter signal-noise discriminators and a lower matched-filter frequency cut-off. In particular, for a population of simulated signals with isotropically distributed spins, we improve the sensitive volume-time product over previous PyCBC-based searches, at an inverse false alarm rate of 100 years, by a factor of 1.5 to 3 depending on the total binary mass. We deploy this new search on Advanced LIGO-Virgo data from the first half of the third observing run. The search does not identify any new significant IMBH binaries but does confirm the detection of the short-duration GW signal GW190521 with a false alarm rate of 1 in 727 years.
LIGO and Virgo have recently observed a number of gravitational wave (GW) signals that are fully consistent with being emitted by binary black holes described by general relativity. However, there are theoretical proposals of exotic objects that can be massive and compact enough to be easily confused with black holes. Nevertheless, these objects differ from black holes in having nonzero tidal deformabilities, which can allow one to distinguish binaries containing such objects from binary black holes using GW observations. Using full Bayesian parameter estimation, we investigate the possibility of constraining the parameter space of such black hole mimickers with upcoming GW observations. Employing perfect fluid stars with a polytropic equation of state as a simple model that can encompass a variety of possible black hole mimickers, we show how the observed masses and tidal deformabilities of a binary constrain the equation of state. We also show how such constraints can be used to rule out some simple models of boson stars.
In this paper we have investigated the gravitational lensing in a spherically symmetric spacetime with torsion in the generalized Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity by considering higher order terms. The torsion parameters change the spacetime structure which affects the photon sphere, the deflection angle and the strong gravitational lensing. The condition of existence of horizons is not inconsistent with that of the photon sphere. Especially, there exists a novel case in which there is horizon but no photon sphere for the considered spacetime. In this special case, the deflection angle of the light ray near the event horizon also diverges logarithmically, but the coefficients in the strong-field limit are different from those in the cases with photon sphere. Moreover, in the far-field limit, we find that the deflection angle for certain torsion parameters approaches zero from the negative side, which is different from those in the usual spacetimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا