ترغب بنشر مسار تعليمي؟ اضغط هنا

Hamiltonian light-front quantum field theory provides a framework for calculating both static and dynamic properties of strongly interacting relativistic systems. Invariant masses, correlated parton amplitudes and time-dependent scattering amplitudes , possibly with strong external time-dependent fields, represent a few of the important applications. By choosing the light-front gauge and adopting an orthonormal basis function representation, we obtain a large, sparse, Hamiltonian matrix eigenvalue problem for mass eigenstates that we solve by adapting ab initio no-core methods of nuclear many-body theory. In the continuum limit, the infinite matrix limit, we recover full covariance. Guided by the symmetries of light-front quantized theory, we adopt a two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall anti-de Sitter/quantum chromodynamics (AdS/QCD) model obtained from light-front holography. We outline our approach and present results for non-linear Compton scattering, evaluated non-perturbatively, where a strong and time-dependent laser field accelerates the electron and produces states of higher invariant mass i.e. final states with photon emission.
We introduce a nonperturbative, first-principles approach to time-dependent problems in quantum field theory. In this approach, the time-evolution of quantum field configurations is calculated in real time and at the amplitude level. This method is p articularly suitable for treating systems interacting with a time-dependent background field. As a test problem, we apply this approach to QED and study electron acceleration and the associated photon emission in a time- and space-dependent electromagnetic background field.
We present a nonperturbative, first-principles numerical approach for time-dependent problems in the framework of quantum field theory. In this approach the time evolution of quantum field systems is treated in real time and at the amplitude level. A s a test application, we apply this method to QED and study photon emission from an electron in a strong, time-dependent external field. Coherent superposition of electron acceleration and photon emission is observed in the nonperturbative regime.
We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizeable for particles that gain almost no energy through the interaction with the laser pulse.
We discuss classical and quantum corrections to Thomson scattering between an electron and a laser. For radiation reaction, nonlinear, and quantum effects we identify characteristic dimensionless parameters in terms of which we determine the leading order correction terms.
We show that the emission of soft photons via nonlinear Compton scattering in a pulsed plane wave (laser field) is in general infra-red divergent. We give examples of both soft and soft-collinear divergences, and we pay particular attention to the ca se of crossed fields in both classical and quantum theories.
The electron mass shift in a laser field has long remained an elusive concept. We show that the mass shift can exist in pulses but that it is neither unique nor universal: it can be reduced by pulse shaping. We show also that the detection of mass sh ift effects in laser-particle scattering experiments is feasible with current technology, even allowing for the transverse structure of realistic beams.
We discuss pair creation in a strong laser background. Using lightfront field theory, we show that all the physics is contained in the lightfront momentum transfer from the laser, and probe, to the produced pair. The dependence of this momentum trans fer on the geometry of the laser leads to resonance and diffraction effects in pair production spectra. The lightfront approach naturally explains the interpretation of laser-stimulated pair production as a multi-photon process creating pairs of an effective mass.
We consider stimulated pair production employing strong-field QED in a high-intensity laser background. In an infinite plane wave, we show that light-cone quasi-momentum can only be transferred to the created pair as a multiple of the laser frequency , i.e. by a higher harmonic. This translates into discrete resonance conditions providing the support of the pair creation probability which becomes a delta-comb. These findings corroborate the usual interpretation of multi-photon production of pairs with an effective mass. In a pulse, the momentum transfer is continuous, leading to broadening of the resonances and sub-threshold behaviour. The peaks remain visible as long as the number of cycles per pulse exceeds unity. The resonance patterns in pulses are analogous to those of a diffraction process based on interference of the produced pairs.
We discuss a two-fold extension of QED assuming the presence of strong external fields provided by an ultra-intense laser and noncommutativity of spacetime. While noncommutative effects leave the electrons intensity induced mass shift unchanged, the photons change significantly in character: they acquire a quasi-momentum that is no longer light-like. We study the consequences of this combined noncommutative strong-field effect for basic lepton-photon interactions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا