ﻻ يوجد ملخص باللغة العربية
We discuss a two-fold extension of QED assuming the presence of strong external fields provided by an ultra-intense laser and noncommutativity of spacetime. While noncommutative effects leave the electrons intensity induced mass shift unchanged, the photons change significantly in character: they acquire a quasi-momentum that is no longer light-like. We study the consequences of this combined noncommutative strong-field effect for basic lepton-photon interactions.
The spectrally resolved differential cross section of Compton scattering, $d sigma / d omega vert_{omega = const}$, rises from small towards larger laser intensity parameter $xi$, reaches a maximum, and falls towards the asymptotic strong-field regio
We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $theta $-expanded noncommutative QED. We show that there is no birefringence to the first o
In this paper, we investigate the behavior of non-commutative IR divergences and will also discuss their cancellation in the physical cross sections. The commutative IR (soft) divergences existing in the non-planar diagrams will be examined in order
Over the last Century the method of particle acceleration to high energies has become the prime approach to explore the fundamental nature of matter in laboratory. It appears that the latest search of the contemporary accelerator based on the collide
Absorption covers the physical processes which convert intense photon flux into energetic particles when a high-power laser illuminates optically-thick matter. It underpins important petawatt-scale applications today, e.g., medical-quality proton bea