ترغب بنشر مسار تعليمي؟ اضغط هنا

The approximation of a circle with a fine square grid distorts the perimeter by a factor of $tfrac{4}{pi}$. We prove that this factor is the same on average for approximations of any curve with any Delaunay mosaic (known as Voronoi path), and extend the results to all dimensions, generalizing Voronoi paths to Voronoi scapes.
Consider a random set of points on the unit sphere in $mathbb{R}^d$, which can be either uniformly sampled or a Poisson point process. Its convex hull is a random inscribed polytope, whose boundary approximates the sphere. We focus on the case $d=3$, for which there are elementary proofs and fascinating formulas for metric properties. In particular, we study the fraction of acute facets, the expected intrinsic volumes, the total edge length, and the distance to a fixed point. Finally we generalize the results to the ellipsoid with homeoid density.
40 - Anton Nikitenko 2019
In some applications, like some areas in stochastic geometry, a convenient change of variables involves spheres. In this review we summarize formulas of Blaschke-Petkantschin type, that help to pass from integration over $k$-tuples of points in space to the integration by some sphere passing through those points.
The order-$k$ Voronoi tessellation of a locally finite set $X subseteq mathbb{R}^n$ decomposes $mathbb{R}^n$ into convex domains whose points have the same $k$ nearest neighbors in $X$. Assuming $X$ is a stationary Poisson point process, we give expl icit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the $k$ nearest points in $X$ are within a given distance threshold.
Slicing a Voronoi tessellation in $mathbb{R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in $mathbb{R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a byproduct, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in $mathbb{R}^n$
Using the geodesic distance on the $n$-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determi ne the expected number of intervals whose radii are less than or equal to a given threshold. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in $mathbb{R}^{n+1}$, so we also get the expected number of faces of a random inscribed polytope. We find that the expectations are essentially the same as for the Poisson-Delaunay mosaic in $n$-dimensional Euclidean space. As proved by Antonelli and collaborators, an orthant section of the $n$-sphere is isometric to the standard $n$-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the $n$-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics.
Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from an n-dimensional Poisson point process, we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and non-singular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we get the expected numbers of simplices in the Poisson-Delaunay mosaic in dimensions up to 4.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا