ترغب بنشر مسار تعليمي؟ اضغط هنا

Average and Expected Distortion of Voronoi Paths and Scapes

54   0   0.0 ( 0 )
 نشر من قبل Anton Nikitenko
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The approximation of a circle with a fine square grid distorts the perimeter by a factor of $tfrac{4}{pi}$. We prove that this factor is the same on average for approximations of any curve with any Delaunay mosaic (known as Voronoi path), and extend the results to all dimensions, generalizing Voronoi paths to Voronoi scapes.



قيم البحث

اقرأ أيضاً

Let $X_1,ldots,X_n$ be i.i.d. random points in the $d$-dimensional Euclidean space sampled according to one of the following probability densities: $$ f_{d,beta} (x) = text{const} cdot (1-|x|^2)^{beta}, quad |x|leq 1, quad text{(the beta case)} $$ an d $$ tilde f_{d,beta} (x) = text{const} cdot (1+|x|^2)^{-beta}, quad xinmathbb{R}^d, quad text{(the beta case).} $$ We compute exactly the expected intrinsic volumes and the expected number of facets of the convex hull of $X_1,ldots,X_n$. Asymptotic formulae where obtained previously by Affentranger [The convex hull of random points with spherically symmetric distributions, 1991]. By studying the limits of the beta case when $betadownarrow -1$, respectively $beta uparrow +infty$, we can also cover the models in which $X_1,ldots,X_n$ are uniformly distributed on the unit sphere or normally distributed, respectively. We obtain similar results for the random polytopes defined as the convex hulls of $pm X_1,ldots,pm X_n$ and $0,X_1,ldots,X_n$. One of the main tools used in the proofs is the Blaschke-Petkantschin formula.
We study stability of the spectral gap and observable diameter for metricmeasure spaces satisfying the RCD(1, $infty$) condition. We show that if such a space has an almost maximal spectral gap, then it almost contains a Gaussian component, and the L aplacian has eigenvalues that are close to any integers, with dimension-free quantitative bounds. Under the additional assumption that the space admits a needle disintegration, we show that the spectral gap is almost maximal iff the observable diameter is almost maximal, again with quantitative dimension-free bounds.
We study the Gromov waist in the sense of $t$-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromovs original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no $t$-neighborhood waist property, including a rather wide class of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2. We use a simpler form of Gromovs pancake argument to produce some estimates of $t$-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. For readers convenience, in one appendix of this paper we provide a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian measures. In the other appendix, we provide a comparison of different variations of Gromovs pancake method.
The deviation of a general convex body with twice differentiable boundary and an arbitrarily positioned polytope with a given number of vertices is studied. The paper considers the case where the deviation is measured in terms of the surface areas of the involved sets, more precisely, by what is called the surface area deviation. The proof uses arguments and constructions from probability, convex and integral geometry. The bound is closely related to $p$-affine surface areas.
Let $K in R^d$ be a convex body, and assume that $L$ is a randomly rotated and shifted integer lattice. Let $K_L$ be the convex hull of the (random) points $K cap L$. The mean width $W(K_L)$ of $K_L$ is investigated. The asymptotic order of the mean width difference $W(l K)-W((l K)_L)$ is maximized by the order obtained by polytopes and minimized by the order for smooth convex sets as $l to infty$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا