ﻻ يوجد ملخص باللغة العربية
Using the geodesic distance on the $n$-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in $mathbb{R}^{n+1}$, so we also get the expected number of faces of a random inscribed polytope. We find that the expectations are essentially the same as for the Poisson-Delaunay mosaic in $n$-dimensional Euclidean space. As proved by Antonelli and collaborators, an orthant section of the $n$-sphere is isometric to the standard $n$-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the $n$-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics.
Slicing a Voronoi tessellation in $mathbb{R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of
Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from an n-dimensional Poisson point process, we study the expected
The order-$k$ Voronoi tessellation of a locally finite set $X subseteq mathbb{R}^n$ decomposes $mathbb{R}^n$ into convex domains whose points have the same $k$ nearest neighbors in $X$. Assuming $X$ is a stationary Poisson point process, we give expl
The convex hull generated by the restriction to the unit ball of a stationary Poisson point process in the $d$-dimensional Euclidean space is considered. By establishing sharp bounds on cumulants, exponential estimates for large deviation probabiliti
Suppose we choose $N$ points uniformly randomly from a convex body in $d$ dimensions. How large must $N$ be, asymptotically with respect to $d$, so that the convex hull of the points is nearly as large as the convex body itself? It was shown by Dyer-