ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new design for the water Cherenkov detectors that are in use in various cosmic ray observatories. This novel design can provide a significant improvement in the independent measurement of the muonic and electromagnetic component of exten sive air showers. From such multi-component data an event by event classification of the primary cosmic ray mass becomes possible. According to popular hadronic interaction models, such as EPOS-LHC or QGSJetII-04, the discriminating power between iron and hydrogen primaries reaches Fisher values of $sim$ 2 or above for energies in excess of $10^{19}$ eV with a detector array layout similar to that of the Pierre Auger Observatory.
The Pierre Auger Observatory is the worlds largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancem ents are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our X$_{max}$ data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.
This is a review of the most resent results from the investigation of the Ultrahigh Energy Cosmic Rays, particles of energy exceeding 10$^{18}$ eV. After a general introduction to the topic and a brief review of the lower energy cosmic rays and the d etection methods, the two most recent experiments, the High Resolution Flys Eye (HiRes) and the Southern Auger Observatory are described. We then concentrate on the results from these two experiments on the cosmic ray energy spectrum, the chemical composition of these cosmic rays and on the searches for their sources. We conclude with a brief analysis of the controversies in these results and the projects in development and construction that can help solve the remaining problems with these particles.
The arrival time distribution of cosmic ray events is well suited to extract information regarding sky anisotropies. For an experiment with nearly constant exposure, the frequency resolution one can achieve is given by the inverse of the time $T$ dur ing which the data was recorded. For $T$ larger than one calendar year the resolution becomes sufficient to resolve the sidereal and diurnal frequencies. Using a Fourier expansion on a modified time parameter, we show in this note that one can accurately extract sidereal modulations without knowledge of the experimental coverage. This procedure also gives the full frequency pattern of the event sample under studies which contains important information about possible systematics entering in the sidereal analysis. We also show how this method allows to correct for those systematics. Finally, we show that a two dimensional analysis, in the form of the spherical harmonic ($Y_l^m$) decomposition, can be performed under the same conditions for all $m e 0$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا