ﻻ يوجد ملخص باللغة العربية
The arrival time distribution of cosmic ray events is well suited to extract information regarding sky anisotropies. For an experiment with nearly constant exposure, the frequency resolution one can achieve is given by the inverse of the time $T$ during which the data was recorded. For $T$ larger than one calendar year the resolution becomes sufficient to resolve the sidereal and diurnal frequencies. Using a Fourier expansion on a modified time parameter, we show in this note that one can accurately extract sidereal modulations without knowledge of the experimental coverage. This procedure also gives the full frequency pattern of the event sample under studies which contains important information about possible systematics entering in the sidereal analysis. We also show how this method allows to correct for those systematics. Finally, we show that a two dimensional analysis, in the form of the spherical harmonic ($Y_l^m$) decomposition, can be performed under the same conditions for all $m e 0$.
The measurement of large scale anisotropies in cosmic ray arrival directions at energies above 10^13 eV is performed through the detection of Extensive Air Showers produced by cosmic ray interactions in the atmosphere. The observed anisotropies are s
Twitter users signal social identity in their profile descriptions, or bios, in a number of important but complex ways that are not well-captured by existing characterizations of how identity is expressed in language. Better ways of defining and meas
We use more than two years of data from the Pierre Auger Observatory to search for anisotropies on large scales in different energy windows. We account for various systematics in the acceptance, in particular due to the array growth and weather varia
In this note we investigate the effects of perturbations in a dark energy component with a constant equation of state on large scale cosmic microwave background anisotropies. The inclusion of perturbations increases the large scale power. We investig
Assuming that the neutrino luminosity from the neutron star core is sufficiently high to drive supernova explosions by the neutrino-heating mechanism, we show that low-mode (l = 1, 2) convection can develop from random seed perturbations behind the s