ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Graphity (QG) is a model of emergent geometry in which space is represented by a dynamical graph. The graph evolves under the action of a Hamiltonian from a high-energy pre-geometric state to a low-energy state in which geometry emerges as a coarse-grained effective property of space. Here we show the results of numerical modelling of the evolution of the QG Hamiltonian, a process we term ripening by analogy with crystallographic growth. We find that the model as originally presented favours a graph composed of small disjoint subgraphs. Such a disconnected space is a poor representation of our universe. A new term is introduced to the original QG Hamiltonian, which we call the hypervalence term. It is shown that the inclusion of a hypervalence term causes a connected lattice-like graph to be favoured over small isolated subgraphs.
Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating th e development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a flexible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.
Adiabatic transport of information is a widely invoked resource in connection with quantum information processing and distribution. The study of adiabatic transport via spin-half chains or clusters is standard in the literature, while in practice the true realisation of a completely isolated two-level quantum system is not achievable. We explore here, theoretically, the extension of spin-half chain models to higher spins. Considering arrangements of three spin-one particles, we show that adiabatic transport, specifically a generalisation of the Dark State Adiabatic Passage procedure, is applicable to spin-one systems. We thus demonstrate a qutrit state transfer protocol. We discuss possible ways to physically implement this protocol, considering quantum dot and nitrogen-vacancy implementations.
Interaction-free measurement is a surprising consequence of quantum interference, where the presence of objects can be sensed without any disturbance of the object being measured. Here we show an extension of interaction-free measurement using techni ques from spatial adiabatic passage, specifically multiple reciever adiabatic passage. Due to subtle properties of the adiabatic passage, it is possible image an object without interaction between the imaging photons and the sample. The technique can be used on multiple objects in parallel, and is entirely deterministic in the adiabatic limit. Unlike more conventional interaction-free measurement schemes, this adiabatic process is driven by the symmetry of the system, and not by more usual interference effects. As such it provides an interesting alternative quantum protocol which may be applicable to photonic implementations of spatial adiabatic passage. We also show that this scheme can be used to implement a collision-free quantum routing protocol.
Electromagnetically-induced transparency (EIT) exploits quantum coherence to burn subnatural linewidth holes within a spectral line. We investigate the less explored properties of EIT to effect absorptive nonlinear processes without restrictions on t he relative intensities of pump and probe fields. We show that a three-level medium under imperfect EIT conditions can generate a form of bleaching that is qualitatively similar to two-state saturable absorption. This scheme has the advantages of greater sensitivity to signal intensity and controllability over its bleaching intensity level post-fabrication. Such effects could prove useful for noise filtration at very low light levels.
Dynamic coupling of cavities to a quantum network is of major interest to distributed quantum information processing schemes based on cavity quantum electrodynamics. This can be achieved by active tuning a mediating atom-cavity system. In particular, we consider the dynamic coupling between two coupled cavities, each interacting with a two-level atom, realized by tuning one of the atoms. One atom-field system can be controlled to become maximally and minimally coupled with its counterpart, allowing high fidelity excitation confinement, Q-switching and reversible state transport. As an application, we first show that simple tuning can lead to emission of near-Gaussian single-photon pulses that is significantly different from the usual exponential decay in a passive cavity-based system. The influences of cavity loss and atomic spontaneous emission are studied in detailed numerical simulations, showing the practicality of these schemes within the reach of current experimental technology in solid-state environment. We then show that when the technique is employed to an extended coupled-cavity scheme involving a multi-level atom, arbitrary temporal superposition of single photons can be engineered in a deterministic way.
Cavity quantum electrodynamic schemes for quantum gates are amongst the earliest quantum computing proposals. Despite continued progress, and the dramatic recent demonstration of photon blockade, there are still issues with optimal coupling and gate operation involving high-quality cavities. Here we show dynamic control techniques that allow scalable cavity-QED based quantum gates, that use the full bandwidth of the cavities. When applied to quantum gates, these techniques allow an order of magnitude increase in operating speed, and two orders of magnitude reduction in cavity Q, over passive cavity-QED architectures. Our methods exploit Stark shift based Q-switching, and are ideally suited to solid-state integrated optical approaches to quantum computing.
Quantum communication places stringent requirements on single-photon sources. Here we report a theoretical study of the cavity Purcell enhancement of two diamond point defects, the nickel-nitrogen (NE8) and silicon-vacancy (SiV) centers, for high-per formance, near on-demand single-photon generation. By coupling the centers strongly to high-finesse optical photonic-bandgap cavities with modest quality factor Q = O(10^4) and small mode volume V = O(lambda^3), these system can deliver picosecond single-photon pulses at their zero-phonon lines with probabilities of 0.954 (NE8) and 0.812 (SiV) under a realistic optical excitation scheme. The undesirable blinking effect due to transitions via metastable states can also be suppressed with O(10^{-4}) blinking probability. We analyze the application of these enhanced centers, including the previously-studied cavity-enhanced nitrogen-vacancy (NV) center, to long-distance BB84 quantum key distribution (QKD) in fiber-based, open-air terrestrial and satellite-ground setups. In this comparative study, we show that they can deliver performance comparable with decoy state implementation with weak coherent sources, and are most suitable for open-air communication.
Electromagnetically induced transparency (EIT) has been often proposed for generating nonlinear optical effects at the single photon level; in particular, as a means to effect a quantum non-demolition measurement of a single photon field. Previous tr eatments have usually considered homogeneously broadened samples, but realisations in any medium will have to contend with inhomogeneous broadening. Here we reappraise an earlier scheme [Munro textit{et al.} Phys. Rev. A textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an alternative mode of operation that is preferred in an inhomogeneous environment. We further show the implications of these results on a potential implementation in diamond containing nitrogen-vacancy colour centres. Our modelling shows that single mode waveguide structures of length $200 mumathrm{m}$ in single-crystal diamond containing a dilute ensemble of NV$^-$ of only 200 centres are sufficient for quantum non-demolition measurements using EIT-based weak nonlinear interactions.
We design extremely flexible ultrahigh-Q diamond-based double-heterostructure photonic crystal slab cavities by modifying the refractive index of the diamond. The refractive index changes needed for ultrahigh-Q cavities with $Q ~ 10^7$, are well with in what can be achieved ($Delta n sim 0.02$). The cavity modes have relatively small volumes $V<2 (lambda /n)^3$, making them ideal for cavity quantum electro-dynamic applications. Importantly for realistic fabrication, our design is flexible because the range of parameters, cavity length and the index changes, that enables an ultrahigh-Q is quite broad. Furthermore as the index modification is post-processed, an efficient technique to generate cavities around defect centres is achievable, improving prospects for defect-tolerant quantum architectures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا