ﻻ يوجد ملخص باللغة العربية
Interaction-free measurement is a surprising consequence of quantum interference, where the presence of objects can be sensed without any disturbance of the object being measured. Here we show an extension of interaction-free measurement using techniques from spatial adiabatic passage, specifically multiple reciever adiabatic passage. Due to subtle properties of the adiabatic passage, it is possible image an object without interaction between the imaging photons and the sample. The technique can be used on multiple objects in parallel, and is entirely deterministic in the adiabatic limit. Unlike more conventional interaction-free measurement schemes, this adiabatic process is driven by the symmetry of the system, and not by more usual interference effects. As such it provides an interesting alternative quantum protocol which may be applicable to photonic implementations of spatial adiabatic passage. We also show that this scheme can be used to implement a collision-free quantum routing protocol.
Light routing and manipulation are important aspects of integrated optics. They essentially rely on beam splitters which are at the heart of interferometric setups and active routing. The most common implementations of beam splitters suffer either fr
We show that with adiabatic passage, one can reliably drive two-photon optical transitions between the ground states and interacting Rydberg states in a pair of atoms. For finite Rydberg interaction strengths a new adiabatic pathway towards the doubl
Entangled states of two ions are realized by using an adiabatic process. Based on the proposal by Linington and Vitanov, we have generated Dicke states in optical qubits of two $^{40}$Ca$^+$ ions by applying frequency-chirped optical pulses with time
In this paperwe propose two theoretical schemes for implementation of quantum phase gates by engineering the phase-sensitive dark state of two atoms subjected to Rydberg-Rydberg interaction. Combining the conventional adiabatic techniques and current
We propose a technique which produces nearly complete ionization of the population of a discrete state coupled to a continuum by a two-photon transition via a lossy intermediate state whose lifetime is much shorter than the interaction duration. We s