ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometrogenesis under Quantum Graphity: problems with the ripening Universe

40   0   0.0 ( 0 )
 نشر من قبل Samuel Wilkinson Mr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum Graphity (QG) is a model of emergent geometry in which space is represented by a dynamical graph. The graph evolves under the action of a Hamiltonian from a high-energy pre-geometric state to a low-energy state in which geometry emerges as a coarse-grained effective property of space. Here we show the results of numerical modelling of the evolution of the QG Hamiltonian, a process we term ripening by analogy with crystallographic growth. We find that the model as originally presented favours a graph composed of small disjoint subgraphs. Such a disconnected space is a poor representation of our universe. A new term is introduced to the original QG Hamiltonian, which we call the hypervalence term. It is shown that the inclusion of a hypervalence term causes a connected lattice-like graph to be favoured over small isolated subgraphs.

قيم البحث

اقرأ أيضاً

Quantum graphity offers the intriguing notion that space emerges in the low energy states of the spatial degrees of freedom of a dynamical lattice. Here we investigate metastable domain structures which are likely to exist in the low energy phase of lattice evolution. Through an annealing process we explore the formation of metastable defects at domain boundaries and the effects of domain structures on the propagation of bosons. We show that these structures should have observable background independent consequences including scattering, double imaging, and gravitational lensing-like effects.
The origin of negative pressure fluid (the dark energy) is investigated in the quantum model of the homogeneous, isotropic and closed universe filled with a uniform scalar field and a perfect fluid which defines a reference frame. The equations of th e model are reduced to the form which allows a direct comparison between them and the equations of the Einsteinian classical theory of gravity. It is shown that quantized scalar field has a form of a condensate which behaves as an antigravitating medium. The theory predicts an accelerating expansion of the universe even if the vacuum energy density vanishes. An antigravitating effect of a condensate has a purely quantum nature. It is shown that the universe with the parameters close to the Planck ones can go through the period of exponential expansion. The conditions under which in semi-classical approximation the universe looks effectively like spatially flat with negative deceleration parameter are determined. The reduction to the standard model of classical cosmology is discussed.
174 - I. Licata , G. Iovane , L. Chiatti 2019
In this paper we analyze the Dark Matter problem and the distribution of matter through two different approaches, which are linked by the possibility that the solution of these astronomical puzzles should be sought in the quantum imprinting of the Un iverse. The first approach is based on a cosmological model formulated and developed in the last ten years by the first and third authors of this paper; the so-called Archaic Universe. The second approach was formulated by Rosen in 1933 by considering the Friedmann-Einstein equations as a simple one-dimensional dynamical system reducing the cosmological equations in terms of a Schroedinger equation. As an example, the quantum memory in cosmological dynamics could explain the apparently periodic structures of the Universe while Archaic Universe shows how the quantum phase concernts not only an ancient era of the Universe, but quantum facets permeating the entire Universe today.
54 - Hideki Maeda 2015
We study the time evolution of a wave function for the spatially flat Friedmann-Lemaitre-Robertson-Walker universe governed by the Wheeler-DeWitt equation in both analytical and numerical methods. We consider a Brown-Kuchar dust as a matter field in order to introduce a clock in quantum cosmology and adopt the Laplace-Beltrami operator-ordering. The Hamiltonian operator admits an infinite number of self-adjoint extensions corresponding to a one-parameter family of boundary conditions at the origin in the minisuperspace. For any value of the extension parameter in the boundary condition, the evolution of a wave function is unitary and the classical initial singularity is avoided and replaced by the big bounce in the quantum system. Exact wave functions show that the expectation value of the spatial volume of the universe obeys the classical time evolution in the late time but its variance diverges.
351 - Sang Pyo Kim 2019
Quantum simulation provides quantum systems under study with analogous controllable quantum systems and has wide applications from condensed-matter physics to high energy physics and to cosmology. The quantum system of a homogeneous and isotropic fie ld in the Friedmann-Robertson-Walker universe can be simulated by a charge in an electrically modulated ion trap. The quantum states of these time-dependent oscillators are constructed by quantum invariants. Further, we propose simulation of quantum Friedmann-Robertson-Walker universe with a minimal massive scalar field by a charged scalar field in a homogeneous, time-dependent, magnetic field in quantum electrodynamics and investigate the Cauchy problem of how the wave functions evolve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا