ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the static charge correlation function in an one-band model on a square lattice. The Hamiltonian consist of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge co rrelation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation one finds in general three charge instabilities, two of them are due to nesting, the third one is the flux phase instability. Since these instabilities cannot explain the experiments in hole-doped cuprates we have included in the irreducible charge correlation function also Aslamasov-Larkin (AL) diagrams where charge fluctuations interact with products of spin fluctuations. We then find at high temperatures a nematic or $d$-wave Pomeranchuk instability with a very small momentum. Its transition temperature decreases roughly linearly with doping in the underdoped region and vanishes near optimal doping. Decreasing the temperature further a secondary axial charge-density wave (CDW) instability appears with mainly $d$-wave symmetry and a wave vector somewhat larger than the distance between nearest neighbor hot spots. At still lower temperatures the diagonal flux phase instability emerges. A closer look shows that the AL diagrams enhance mainly axial and not diagonal charge fluctuations in our one-band model. This is the main reason why axial and not diagonal instabilities are the leading ones in agreement with experiment. The two instabilities due to nesting vanish already at very low temperatures and do not play any major role in the phase diagram. Remarkable is that the nematic and the axial CDW instabilities show a large reentrant behavior.
64 - Andres Greco 2016
Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by r eal fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.
Using the large-$N$ limit of the $t$-$J$ model and allowing also for phonons and the electron-phonon interaction we study the isotope effect $alpha$ for coupling constants appropriate for YBCO. We find that $alpha$ has a minimum at optimal doping and increases strongly (slightly) towards the underdoped (overdoped) region. Using values for the electron phonon interaction from the local density approximation we get good agreement for $alpha$ as a function of $T_c$ and doping $delta$ with recent experimental data in YBCO. Our results strongly suggest that the large increase of $alpha$ in the underdoped region is (a) caused by the shift of electronic spectral density from low to high energies associated with a competing phase (in our case a charge density wave) and the formation of a gap, and (b) compatible with the small electron phonon coupling constants obtained from the local density approximation. We propose a similar explanation for the anomalous behavior of $alpha$ in Sr doped La$_2$CuO$_4$ near the doping 1/8.
One of the puzzling characteristics of the pseudogap phase of high-$T_c$ cuprates is the nodal-antinodal dichotomy. While the nodal quasiparticles have a Fermi liquid behaviour, the antinodal ones show non-Fermi liquid features and an associated pseu dogap. Angle-resolved photoemission spectroscopy and electronic Raman scattering are two valuable tools which have shown universal features which are rather material-independent, and presumably intrinsic to the pseudogap phase. The doping and temperature dependence of the Fermi arcs and the pseudogap observed by photoemission near the antinode correlates with the non-Fermi liquid behaviour observed by Raman for the B$_{1g}$ mode. In contrast, and similar to the nodal quasiparticles detected by photoemission, the Raman B$_{2g}$ mode shows Fermi liquid features. We show that these two experiments can be analysed, in the context of the $t$-$J$ model, by self-energy effects in the proximity to a d-wave flux-phase order instability. This approach supports a crossover origin for the pseudogap, and a scenario of two competing phases. The B$_{2g}$ mode shows, in an underdoped case, a depletion at intermediate energy which has attracted a renewed interest. We study this depletion and discuss its origin and relation with the pseudogap.
130 - Andres Greco , Matias Bejas 2011
The pseudogap phase of high-$T_c$ cuprates is controversially attributed to preformed pairs or to a phase which coexists and competes with superconductivity. One of the challenges is to develop theoretical and experimental studies in order to disting uish between both proposals. Very recently, researchers at Stanford have reported [M. Hashimoto {it et al.}, Nat. Phys. {bf 6}, 414 (2010); R.-H. He {it et al.}, Science {bf 331}, 1579 (2011)] angle-resolved photoemission spectroscopy experiments on Pb-Bi2201 supporting the point of view that the pseudogap is distinct from superconductivity and associated to a spacial symmetry breaking without long-range order. In this paper we show that many features reported by these experiments can be described in the framework of the t-J model considering self-energy effects in the proximity to a d charge-density-wave instability.
At mean-field level the t-J model shows a phase diagram with close analogies to the phase diagram of hole doped cuprates. An order parameter associated with the flux or $d$ charge-density wave ($d$-CDW) phase competes and coexists with superconductiv ity at low doping showing characteristics identified with the observed pseudogap in underdoped cuprates. In addition, in the $d$-CDW state the Fermi surface is reconstructed toward pockets with low spectral weight in the outer part, resembling the arcs observed in angle-resolved photoemission spectroscopy experiments. However, the $d$-CDW requires broken translational symmetry, a fact that is not completely accepted. Including self-energy corrections beyond the mean, field we found that the self-energy can be written as two distinct contributions. One of these (called $Sigma_{flux}$) dominates at low energy and originates from the scattering between carriers and $d$-CDW fluctuations in proximity to the $d$-CDW instability. The second contribution (called $Sigma_{Rlambda}$) dominates at large energy and originates from the scattering between charge fluctuations under the constraint of non double occupancy. In this paper it is shown that $Sigma_{flux}$ is responsible for the origin of low-energy features in the spectral function as a pseudogap and Fermi arcs. The obtained doping and temperature dependence of the pseudogap and Fermi arcs is similar to that observed in experiments. At low energy, $Sigma_{R lambda}$ gives an additional contribution to the closure of the pseudogap.
The recent findings about two distinct quasiparticle inelastic scattering rates in angle-dependent magnetoresistance (ADMR) experiments in overdoped high-$T_c$ cuprates superconductors have motivated many discussions related to the link between super conductivity, pseudogap, and transport properties in these materials. After computing dynamical self-energy corrections in the framework of the $t-J$ model the inelastic scattering rate was introduced as usual. Two distinct scattering rates were obtained showing the main features observed in ADMR experiments. Predictions for underdoped cuprates are discussed. The implicances of these two scattering rates on the resistivity were also studied as a function of doping and temperature and confronted with experimental measurements.
Dimerized quantum spin systems may appear under several circumstances, e.g by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a Neel state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin $S=1/2$ dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both a SO(4) formulation and bond-operators.
141 - Andres Greco 2009
Preformed pairs above $T_c$ and the two-gap scenarios are two main proposals for describing the low doping pseudogap phase of high-$T_c$ cuprates. Very recent angle-resolved photoemission experiments have shown features which were interpreted as evid ence for preformed pairs. Here it is shown that those results can be explained also in the context of the two-gap scenario if self-energy effects are considered. The discussion is based on the $d$-CDW theory or the flux phase of the $t-J$ model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا