ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for two competing order parameters in underdoped cuprates superconductors from a model analysis of the Fermi-arc effects

217   0   0.0 ( 0 )
 نشر من قبل Andres Greco
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andres Greco




اسأل ChatGPT حول البحث

Preformed pairs above $T_c$ and the two-gap scenarios are two main proposals for describing the low doping pseudogap phase of high-$T_c$ cuprates. Very recent angle-resolved photoemission experiments have shown features which were interpreted as evidence for preformed pairs. Here it is shown that those results can be explained also in the context of the two-gap scenario if self-energy effects are considered. The discussion is based on the $d$-CDW theory or the flux phase of the $t-J$ model.



قيم البحث

اقرأ أيضاً

132 - Tanmoy Das , R. S. Markiewicz , 2008
Angle-dependent studies of the gap function provide evidence for the coexistence of two distinct gaps in hole doped cuprates, where the gap near the nodal direction scales with the superconducting transition temperature $T_c$, while that in the antin odal direction scales with the pseudogap temperature. We present model calculations which show that most of the characteristic features observed in the recent angle-resolved photoemission spectroscopy (ARPES) as well as scanning tunneling microscopy (STM) two-gap studies are consistent with a scenario in which the pseudogap has a non-superconducting origin in a competing phase. Our analysis indicates that, near optimal doping, superconductivity can quench the competing order at low temperatures, and that some of the key differences observed between the STM and ARPES results can give insight into the superlattice symmetry of the competing order.
255 - V. Baledent , D. Haug , Y. Sidis 2010
We report a polarized neutron scattering study of the orbital-like magnetic order in strongly underdoped ${rm YBa_2Cu_3O_{6.45}}$ and ${rm YBa_2(Cu_{0.98}Zn_{0.02})_3O_{6.6}}$. Their hole doping levels are located on both sides of the critical doping $p_{MI}$ of a metal-insulator transition inferred from transport measurements. Our study reveals a drop down of the orbital-like order slightly below $p_{MI}$ with a steep decrease of both the ordering temperature $T_{mag}$ and the ordered moment. Above $p_{MI}$, substitution of quantum impurities does not change $T_{mag}$, whereas it lowers significantly the bulk ordered moment. The modifications of the orbital-like magnetic order are interpreted in terms of a competition with electronic liquid crystal phases around $p_{MI}$. This competition gives rise to a mixed magnetic state in ${rm YBa_2Cu_3O_{6.45}}$ and a phase separation in ${rm YBa_2(Cu_{0.98}Zn_{0.02})_3O_{6.6}}$.
Cuprate high-T_c superconductors on the Mott-insulating side of optimal doping (with respect to the highest T_cs) exhibit enigmatic behavior in the non-superconducting state. Near optimal doping the transport and spectroscopic properties are unlike t hose of a Landau-Fermi liquid. For carrier concentrations below optimal doping a pseudogap removes quasi-particle spectral weight from parts of the Fermi surface, and causes a break-up of the Fermi surface into disconnected nodal and anti-nodal sectors. Here we show that the near-nodal excitations of underdoped cuprates obey Fermi liquid behavior. Our optical measurements reveal that the dynamical relaxation rate 1/tau(omega,T) collapses on a universal function proportional to (hbar omega)^2+(1.5 pi k_B T)^2. Hints at possible Fermi liquid behavior came from the recent discovery of quantum oscillations at low temperature and high magnetic field in underdoped YBa2Cu3O6+d and YBa2Cu4O8, from the observed T^2-dependence of the DC ({omega}=0) resistivity for both overdoped and underdoped cuprates, and from the two-fluid analysis of nuclear magnetic resonance data. However, the direct spectroscopic determination of the energy dependence of the life-time of the excitations -provided by our measurements- has been elusive up to now. This observation defies the standard lore of non-Fermi liquid physics in high T_c cuprates on the underdoped side of the phase diagram.
We survey recent experimental results including quantum oscillations and complementary measurements probing the electronic structure of underdoped cuprates, and theoretical proposals to explain them. We discuss quantum oscillations measured at high m agnetic fields in the underdoped cuprates that reveal a small Fermi surface section comprising quasiparticles that obey Fermi-Dirac statistics, unaccompanied by other states of comparable thermodynamic mass at the Fermi level. The location of the observed Fermi surface section at the nodes is indicated by a body of evidence including the collapse in Fermi velocity measured by quantum oscillations, which is found to be associated with the nodal density of states observed in angular resolved photoemission, the persistence of quantum oscillations down to low fields in the vortex state, the small value of density of states from heat capacity and the multiple frequency quantum oscillation pattern consistent with nodal magnetic breakdown of bilayer-split pockets. A nodal Fermi surface pocket is further consistent with the observation of a density of states at the Fermi level concentrated at the nodes in photoemission experiments, and the antinodal pseudogap observed by photoemission, optical conductivity, nuclear magnetic resonance Knight shift, as well as other complementary diffraction, transport and thermodynamic measurements. One of the possibilities considered is that the small Fermi surface pockets observed at high magnetic fields can be understood in terms of Fermi surface reconstruction by a form of small wavevector charge order, observed over long lengthscales in experiments such as nuclear magnetic resonance and x-ray scattering, potentially accompanied by an additional mechanism to gap the antinodal density of states.
A single impurity problem is investigated for multiband s-wave superconductors with different sign order parameters (+-s-wave superconductors) suggested in Fe-pnictide superconductors. Not only intraband but also interband scattering is considered at the impurity. The latter gives rise to impurity-induced local boundstates close to the impurity. We present an exact form of the energy of the local boundstates as a function of strength of the two types of impurity scattering. The essential role of the impurity is unchanged in finite number of impurities. The main conclusions for a single impurity problem help us understand effects of dense impurities in the +-s-wave superconductors. Local density of states around the single impurity is also investigated. We suggest impurity site nuclear magnetic resonance as a suitable experiment to probe the local boundstates that is peculiar to the +-s-wave state. We find that the +-s-wave model is mapped to a chiral dx2-y2+-idxy-wave, reflecting the unconventional nature of the sign reversing order parameter. For a quantum magnetic impurity, interband scattering destabilizes the Kondo singlet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا