ﻻ يوجد ملخص باللغة العربية
Dimerized quantum spin systems may appear under several circumstances, e.g by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a Neel state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin $S=1/2$ dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both a SO(4) formulation and bond-operators.
We develop a dynamical symmetry approach to path integrals for general interacting quantum spin systems. The time-ordered exponential obtained after the Hubbard-Stratonovich transformation can be disentangled into the product of a finite number of th
We study a family of frustrated anti-ferromagnetic spin-$S$ systems with a fully dimerized ground state. This state can be exactly obtained without the need to include any additional three-body interaction in the model. The simplest members of the fa
Stochastic mechanics---the study of classical stochastic systems governed by things like master equations and Fokker-Planck equations---exhibits striking mathematical parallels to quantum mechanics. In this article, we make those parallels more trans
An expression for the Green function G(E;x_1,x_2) of the Schroedinger equation is obtained through the approximations of the path integral by n-fold multiple integrals. The approximations to Re{G(E;x,x)} on the real E-axis have peaks near the values
Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrodinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for $ka