ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate how entanglement can enhance two-photon absorption in a three-level system. First, we employ the Schmidt decomposition to determine the entanglement properties of the optimal two-photon state to drive such a transition, and the maximum enhancement which can be achieved in comparison to the optimal classical pulse. We then adapt the optimization problem to realistic experimental constraints, where photon pairs from a down-conversion source are manipulated by local operations such as spatial light modulators. We derive optimal pulse shaping functions to enhance the absorption efficiency, and compare the maximal enhancement achievable by entanglement to the yield of optimally shaped, separable pulses.
A comprehensive description of molecular electron transfer reactions is essential for our understanding of fundamental phenomena in bio-energetics and molecular electronics. Experimental studies of molecular systems in condensed-phase environments, h owever, face difficulties to independently control the parameters that govern the transfer mechanism with high precision. We show that trapped-ion experiments instead allow to reproduce and continuously connect vastly different regimes of molecular charge transfer through precise tuning of, e.g., phonon temperature, electron-phonon interactions, and electronic couplings. Such a setting allows not only to reproduce widely-used transport models, such as Marcus theory. It also provides access to transfer regimes that are unattainable for molecular experiments, while controlling and measuring the relevant observables on the level of individual quanta. Our numerical simulations predict an unconventional quantum transfer regime, featuring a transition from quantum adiabatic- to resonance-assisted transfer as a function of the donor-acceptor energy gap, that can be reached by increasing the electronic coupling at low temperatures. Trapped ion-based quantum simulations thus promise to enhance our microscopic understanding of molecular electron transfer processes, and may help to reveal efficient design principles for synthetic devices.
We demonstrate many-body multifractality of the Bose-Hubbard Hamiltonians ground state in Fock space, for arbitrary values of the interparticle interaction. Generalized fractal dimensions unambiguously signal, even for small system sizes, the emergen ce of a Mott insulator, that cannot, however, be naively identified with a localized phase in Fock space. We show that the scaling of the derivative of any generalized fractal dimension with respect to the interaction strength encodes the critical point of the superfluid to Mott insulator transition, and provides an efficient way to accurately estimate its position. We further establish that the transition can be quantitatively characterized by one single wavefunction amplitude from the exponentially large Fock space.
We present a non-destructive method to probe a complex quantum system using multiple impurity atoms as quantum probes. Our protocol provides access to different equilibrium properties of the system by changing its coupling to the probes. In particula r, we show that measurements with two probes reveal the systems non-local two-point density correlations, for probe-system contact interactions. We illustrate our findings with analytic and numerical calculations for the Bose-Hubbard model in the weakly and strongly-interacting regimes, under conditions relevant to ongoing experiments in cold atom systems.
We derive general evolution equations describing the ensemble-average quantum dynamics generated by disordered Hamiltonians. The disorder average affects the coherence of the evolution and can be accounted for by suitably tailored effective coupling agents and associated rates which encode the specific statistical properties of the Hamiltonians eigenvectors and eigenvalues, respectively. Spectral disorder and isotropically disordered eigenvector distributions are considered as paradigmatic test cases.
In order to determine the origin of discontinuities which arise when the semiclassical propagator is employed to describe an infinitely long and infinitesimally thin solenoid carrying magnetic flux, we give a systematic derivation of the semiclassica l limit of the motion of an otherwise free charged particle. Our limit establishes the connection of the quantum mechanical canonical angular momentum to its classical counterpart. Moreover, we show how a picture of Aharonov-Bohm interference of two half-waves acquiring Diracs magnetic phase when passing on either side of the solenoid emerges from the quantum propagator, and that the typical scale of the resulting interference pattern is fully determined by the ratio of the angular part of Hamiltons principal function to Plancks constant. The semiclassical propagator is recovered in the limit when this ratio diverges. We discuss the relation of our results to the whirling-wave representation of the exact propagator.
We study the scattering of a matter-wave from an interacting system of bosons in an optical lattice, focusing on the strong-interaction regime. Analytical expressions for the many-body scattering cross section are derived from a strong-coupling expan sion and a site-decoupling mean-field approximation, and compared to numerically obtained exact results. In the thermodynamic limit, we find a non-vanishing inelastic cross section throughout the Mott insulating regime, which decays quadratically as a function of the boson-boson interaction.
Boson-Sampling holds the potential to experimentally falsify the Extended Church Turing thesis. The computational hardness of Boson-Sampling, however, complicates the certification that an experimental device yields correct results in the regime in w hich it outmatches classical computers. To certify a boson-sampler, one needs to verify quantum predictions and rule out models that yield these predictions without true many-boson interference. We show that a semiclassical model for many-boson propagation reproduces coarse-grained observables that were proposed as witnesses of Boson-Sampling. A test based on Fourier matrices is demonstrated to falsify physically plausible alternatives to coherent many-boson propagation.
We study the influence of quantum density fluctuations in ultracold atoms in an optical lattice on the scattering of matter waves. Such fluctuations are characteristic of the superfluid phase and vanish due to increased interactions in the Mott insul ating phase. We employ an analytical treatment of the scattering and demonstrate that the fluctuations lead to incoherent processes, which we propose to observe via decoherence of the fringes in a Mach-Zender interferometer. In this way we extract the purely coherent part of the scattering. Further, we show that the quantum density fluctuations can also be observed directly in the differential angular scattering cross section for an atomic beam scattered from the atoms in a lattice. Here we find an explicit dependence of the scale of the inelastic scattering on the quantum density fluctuations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا