ﻻ يوجد ملخص باللغة العربية
We study the scattering of a matter-wave from an interacting system of bosons in an optical lattice, focusing on the strong-interaction regime. Analytical expressions for the many-body scattering cross section are derived from a strong-coupling expansion and a site-decoupling mean-field approximation, and compared to numerically obtained exact results. In the thermodynamic limit, we find a non-vanishing inelastic cross section throughout the Mott insulating regime, which decays quadratically as a function of the boson-boson interaction.
We study the scattering of matter-waves from interacting bosons in a one-dimensional optical lattice, described by the Bose-Hubbard Hamiltonian. We derive analytically a formula for the inelastic cross section as a function of the atomic interaction
Disorder, prevalent in nature, is intimately involved in such spectacular effects as the fractional quantum Hall effect and vortex pinning in type-II superconductors. Understanding the role of disorder is therefore of fundamental interest to material
Mean-field dynamics of strongly interacting bosons described by hard core bosons with nearest-neighbor attraction has been shown to support two species of solitons: one of Gross-Pitaevskii (GP-type) where the condensate fraction remains dark and a no
We present the first experimental evidence supporting the postulation that an optical-dipole potential in a condensate undergoing superradiant scattering modifies the structure factor of the system and significantly impacts the scattering. Several co
We study matter wave scattering from an ultracold, many body atomic system trapped in an optical lattice. We determine the angular cross section that a matter wave probe sees and show that it is strongly affected by the many body phase, superfluid or