ترغب بنشر مسار تعليمي؟ اضغط هنا

We argue that classical $(alpha)$ effects qualitatively modify the structure of Euclidean black hole horizons in string theory. While low energy modes experience the geometry familiar from general relativity, high energy ones see a rather different g eometry, in which the Euclidean horizon can be penetrated by an amount that grows with the radial momentum of the probe. We discuss this in the exactly solvable SL(2,R)/U(1) black hole, where it is a manifestation of the black hole/Sine-Liouville duality.
128 - Amit Giveon , David Kutasov 2008
We argue that N=2 supersymmetric Chern-Simons theories exhibit a strong-weak coupling Seiberg-type duality. We also discuss supersymmetry breaking in these theories.
120 - Amit Giveon , David Kutasov 2007
We study deformations of N=1 supersymmetric QCD that exhibit a rich landscape of supersymmetric and non-supersymmetric vacua.
In a recent paper [1] we showed that N=1 supersymmetric QCD in the presence of certain superpotential deformations has a rich landscape of supersymmetric and non-supersymmetric vacua. In this paper we embed this theory in string theory as a low energ y theory of intersecting NS and D-branes. We find that in the region of parameter space of brane configurations that can be reliably studied using classical string theory, the vacuum structure is qualitatively similar to that in the field theory regime. Effects that in field theory come from one loop corrections arise in string theory as classical gravitational effects. The brane construction provides a useful guide to the structure of stable and metastable gauge theory vacua.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا