ﻻ يوجد ملخص باللغة العربية
We argue that classical $(alpha)$ effects qualitatively modify the structure of Euclidean black hole horizons in string theory. While low energy modes experience the geometry familiar from general relativity, high energy ones see a rather different geometry, in which the Euclidean horizon can be penetrated by an amount that grows with the radial momentum of the probe. We discuss this in the exactly solvable SL(2,R)/U(1) black hole, where it is a manifestation of the black hole/Sine-Liouville duality.
Dictated by Symmetry Principle, string theory predicts not General Relativity but its own gravity which assumes the entire closed string massless sector to be geometric and thus gravitational. In terms of $R/(MG)$, i.e. the dimensionless radial varia
We propose a holographic map between Einstein gravity coupled to matter in a de Sitter background and large N quantum mechanics of a system of spins. Holography maps a spin model with a finite dimensional Hilbert space defined on a version of the str
This paper is concerned with the structural stability of spherical horizons. By this we mean stability with respect to variations of the second member of the corresponding differential equations, corresponding to the inclusion of the contribution of
We study stationary black holes in the presence of an external strong magnetic field. In the case where the gravitational backreaction of the magnetic field is taken into account, such an scenario is well described by the Ernst-Wild solution to Einst
Hawking radiation is obtained from anomalies resulting from a breaking of diffeomorphism symmetry near the event horizon of a black hole. Such anomalies, manifested as a nonconservation of the energy momentum tensor, occur in two different forms -- c