ترغب بنشر مسار تعليمي؟ اضغط هنا

We study a continuous and infinite time horizon counterpart to the classic prophet inequality, which we term the stationary prophet inequality problem. Here, copies of a good arrive and perish according to Poisson point processes. Buyers arrive simil arly and make take-it-or-leave-it offers for unsold items. The objective is to maximize the (infinite) time average revenue of the seller. Our main results are pricing-based policies which (i) achieve a $1/2$-approximation of the optimal offline policy, which is best possible, and (ii) achieve a better than $(1-1/e)$-approximation of the optimal online policy. Result (i) improves upon bounds implied by recent work of Collina et al. (WINE20), and is the first optimal prophet inequality for a stationary problem. Result (ii) improves upon a $1-1/e$ bound implied by recent work of Aouad and Saritac{c} (EC20), and shows that this prevalent bound in online algorithms is not optimal for this problem.
The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, w hich maintains a maximal (and hence $2$-approximate) matching in $O(n)$ worst-case update time in $n$-node graphs. We present the first deterministic algorithm which outperforms the folklore algorithm in terms of {em both} approximation ratio and worst-case update time. Specifically, we give a $(2-Omega(1))$-approximate algorithm with $O(sqrt{n}sqrt[8]{m})=O(n^{3/4})$ worst-case update time in $n$-node, $m$-edge graphs. For sufficiently small constant $epsilon>0$, no deterministic $(2+epsilon)$-approximate algorithm with worst-case update time $O(n^{0.99})$ was known. Our second result is the first deterministic $(2+epsilon)$-approximate (weighted) matching algorithm with $O_epsilon(1)cdot O(sqrt[4]{m}) = O_epsilon(1)cdot O(sqrt{n})$ worst-case update time.
252 - Amin Saberi , David Wajc 2021
Nearly three decades ago, Bar-Noy, Motwani and Naor showed that no online edge-coloring algorithm can edge color a graph optimally. Indeed, their work, titled the greedy algorithm is optimal for on-line edge coloring, shows that the competitive ratio of $2$ of the naive greedy algorithm is best possible online. However, their lower bound required bounded-degree graphs, of maximum degree $Delta = O(log n)$, which prompted them to conjecture that better bounds are possible for higher-degree graphs. While progress has been made towards resolving this conjecture for restricted inputs and arrivals or for random arrival orders, an answer for fully general emph{adversarial} arrivals remained elusive. We resolve this thirty-year-old conjecture in the affirmative, presenting a $(1.9+o(1))$-competitive online edge coloring algorithm for general graphs of degree $Delta = omega(log n)$ under vertex arrivals. At the core of our results, and of possible independent interest, is a new online algorithm which rounds a fractional bipartite matching $x$ online under vertex arrivals, guaranteeing that each edge $e$ is matched with probability $(1/2+c)cdot x_e$, for a constant $c>0.027$.
We study random digraphs on sequences of expanders with bounded average degree and weak local limit. The threshold for the existence of a giant strongly connected component, as well as the asymptotic fraction of nodes with giant fan-in or giant fan-o ut are local, in the sense that they are the same for two sequences with the same weak local limit. The digraph has a bow-tie structure, with all but a vanishing fraction of nodes lying either in the unique strongly connected giant and its fan-in and fan-out, or in sets with small fan-in and small fan-out. All local quantities are expressed in terms of percolation on the limiting rooted graph, without any structural assumptions on the limit, allowing, in particular, for non tree-like limits. In the course of proving these results, we prove that for unoriented percolation, there is a unique giant above criticality, whose size and critical threshold are again local. An application of our methods shows that the critical threshold for bond percolation and random digraphs on preferential attachment graphs is $p_c=0$, with an infinite order phase transition at $p_c$.
The rich literature on online Bayesian selection problems has long focused on so-called prophet inequalities, which compare the gain of an online algorithm to that of a prophet who knows the future. An equally-natural, though significantly less well- studied benchmark is the optimum online algorithm, which may be omnipotent (i.e., computationally-unbounded), but not omniscient. What is the computational complexity of the optimum online? How well can a polynomial-time algorithm approximate it? We study the above questions for the online stochastic maximum-weight matching problem under vertex arrivals. For this problem, a number of $1/2$-competitive algorithms are known against optimum offline. This is the best possible ratio for this problem, as it generalizes the original single-item prophet inequality problem. We present a polynomial-time algorithm which approximates the optimal online algorithm within a factor of $0.51$ -- beating the best-possible prophet inequality. In contrast, we show that it is PSPACE-hard to approximate this problem within some constant $alpha < 1$.
We study the problem of sampling a uniformly random directed rooted spanning tree, also known as an arborescence, from a possibly weighted directed graph. Classically, this problem has long been known to be polynomial-time solvable; the exact number of arborescences can be computed by a determinant [Tut48], and sampling can be reduced to counting [JVV86, JS96]. However, the classic reduction from sampling to counting seems to be inherently sequential. This raises the question of designing efficient parallel algorithms for sampling. We show that sampling arborescences can be done in RNC. For several well-studied combinatorial structures, counting can be reduced to the computation of a determinant, which is known to be in NC [Csa75]. These include arborescences, planar graph perfect matchings, Eulerian tours in digraphs, and determinantal point processes. However, not much is known about efficient parallel sampling of these structures. Our work is a step towards resolving this mystery.
We study an online hypergraph matching problem with delays, motivated by ridesharing applications. In this model, users enter a marketplace sequentially, and are willing to wait up to $d$ timesteps to be matched, after which they will leave the syste m in favor of an outside option. A platform can match groups of up to $k$ users together, indicating that they will share a ride. Each group of users yields a match value depending on how compatible they are with one another. As an example, in ridesharing, $k$ is the capacity of the service vehicles, and $d$ is the amount of time a user is willing to wait for a driver to be matched to them. We present results for both the utility maximization and cost minimization variants of the problem. In the utility maximization setting, the optimal competitive ratio is $frac{1}{d}$ whenever $k geq 3$, and is achievable in polynomial-time for any fixed $k$. In the cost minimization variation, when $k = 2$, the optimal competitive ratio for deterministic algorithms is $frac{3}{2}$ and is achieved by a polynomial-time thresholding algorithm. When $k>2$, we show that a polynomial-time randomized batching algorithm is $(2 - frac{1}{d}) log k$-competitive, and it is NP-hard to achieve a competitive ratio better than $log k - O (log log k)$.
We study an optimization problem capturing a core operational question for online retailing platforms. Given models for the users preferences over products as well as the number of items they are willing to observe before clicking on one or abandonin g the search, what is the best way to rank the relevant products in response to a search query? In order to capture both popularity and diversity effects, we model the probability that a user clicks on an element from a subset of products as a monotone submodular function of this set. We also assume that the patience level of the users, or the number of items they are willing to observe before clicking on one or abandoning the search, is a given random variable. Under those assumptions, the objective functions capturing user engagement or platform revenue can be written as a new family of submodular optimization problems over a sequence of elements. We call this family of natural optimization problems sequential submodular optimization. By building on and extending the literature on submodular maximization subject to matroid constraints, we derive a (1-1/e) optimal approximation algorithm for maximizing user engagement and a bi-criteria approximation algorithm for maximizing revenue subject to a lower bound on user engagement.
We study the assignment problem of objects to agents with heterogeneous preferences under distributional constraints. Each agent is associated with a publicly known type and has a private ordinal ranking over objects. We are interested in assigning a s many agents as possible. Our first contribution is a generalization of the well-known and widely used serial dictatorship. Our mechanism maintains several desirable properties of serial dictatorship, including strategyproofness, Pareto efficiency, and computational tractability while satisfying the distributional constraints with a small error. We also propose a generalization of the probabilistic serial algorithm, which finds an ordinally efficient and envy-free assignment, and also satisfies the distributional constraints with a small error. We show, however, that no ordinally efficient and envy-free mechanism is also weakly strategyproof. Both of our algorithms assign at least the same number of students as the optimum fractional assignment.
In this paper we provide nearly linear time algorithms for several problems closely associated with the classic Perron-Frobenius theorem, including computing Perron vectors, i.e. entrywise non-negative eigenvectors of non-negative matrices, and solvi ng linear systems in asymmetric M-matrices, a generalization of Laplacian systems. The running times of our algorithms depend nearly linearly on the input size and polylogarithmically on the desired accuracy and problem condition number. Leveraging these results we also provide improved running times for a broader range of problems including computing random walk-based graph kernels, computing Katz centrality, and more. The running times of our algorithms improve upon previously known results which either depended polynomially on the condition number of the problem, required quadratic time, or only applied to special cases. We obtain these results by providing new iterative methods for reducing these problems to solving linear systems in Row-Column Diagonally Dominant (RCDD) matrices. Our methods are related to the classic shift-and-invert preconditioning technique for eigenvector computation and constitute the first alternative to the result in Cohen et al. (2016) for reducing stationary distribution computation and solving directed Laplacian systems to solving RCDD systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا