ترغب بنشر مسار تعليمي؟ اضغط هنا

In an optical monitoring program to characterize the variability properties of blazar, we observed 10 sources from the Roma-BZCAT catalogue for 26 nights in V and R bands during October 2014 to June 2015 with two telescopes located in India. The samp le includes mainly newly discovered BL Lacs where the redshift of some sources are not known yet. We present the results of flux and color variations of the sample on intraday and short time scales obtained by using the power-enhanced F-test and the nested-ANOVA tests, along with their spectral behavior. We find significant intraday variability in the single FSRQ in our sample, having an amplitude of variation ~12%. Although a few of BL Lacs showed probable variation in some nights, none of them passes the variability tests at 99.9% significance level. We find that 78% of the sample showed significant negative colour--magnitude correlations i.e., a redder-when-brighter spectral evolution. Those which do not show strong or clear chromatism, predominantly exhibit a redder-when-brighter trends. Unlike on hourly timescales, the high synchrotron peaked (HSP) blazars in the sample (BZGJ0656+4237, BZGJ0152+0147 and BZBJ1728+5013) show strong flux variation on days to months timescales, where again we detect a decreasing trend of the spectral slope with brightness. We observe a global steepening of the optical spectrum with increasing flux on intranight timescale for the entire blazar sample. Non-variability in the BL Lacs in our sample could be resulted by distinct contribution from the disk as well as from other components in the studied energy range.
We present variability analyses of twenty pointed XMM-Newton observations of the high energy peaked TeV blazar PG 1553+113 taken during 2010 to 2018. We found intraday variability in the total X-ray energy range (0.3 -- 10 keV) in 16 out of 19 light curves or a duty cycle of ~84%. A discrete correlation function analysis of the intraday light curves in the soft and hard X-ray bands peaks on zero lag, showing that the emission in hard and soft bands are co-spatial and emitted from the same population of leptons. Red-noise dominates the power spectral density (PSD) of all the LCs although the PSDs have a range of spectral slopes from -2.36 to -0.14. On longer timescales, the optical and UV variability patterns look almost identical and well correlated, as are the soft and hard X-ray bands, but the optical/UV variations are not correlated to those in the X-ray band, indicating that the optical/UV and X-ray emissions are emitted by two different populations of leptons. We briefly discuss physical mechanisms which may be capable of explaining the observed flux and spectral variability of PG 1553+113 on these diverse timescales.
We have examined 13 pointed observations of the TeV emitting high synchrotron peak blazar PKS 2155-304, taken by the Suzaku satellite throughout its operational period. We found that the blazar showed large-amplitude intraday variabilities in the sof t (0.8 - 1.5 keV) and the hard (1.5 - 8.0 keV) bands in the light curves. Spectral variability on intraday timescales is estimated using the hardness ratio. The blazar usually becomes harder when brighter and vice versa, following the typical behavior of high synchrotron peak blazars. The power spectral density (PSD) analyses of 11 out of 13 light curves in the total energy (0.8 - 8.0 keV) are found to be red-noise dominated, with power-law spectral indices that span a large range, from -2.81 to -0.88. Discrete correlation function analyses of all the 13 light curves between the soft and the hard bands show that they are well correlated and peak at, or very close to, zero lag. This indicates that the emissions in soft and hard bands are probably cospatial and emitted from the same population of leptons. Considering fluxes versus variability timescales, we found no correlation on intraday timescales, implying that X-ray emission from PKS 2155-304 is not dominated by simple changes in the Doppler factor. We briefly discuss the most likely emission mechanisms responsible for the observed flux and spectral variabilities and place constraints on magnetic field strength and Lorentz factors of the electrons emitting the X-rays in the most likely scenario.
We present time series analyses of three-decade long radio observations of the BL Lacertae object AO 0235+164 made at the University of Michigan Radio Astronomical Observatory operating at three central frequencies of 4.8 GHz, 8.0 GHz and 14.5 GHz. W e detected a quasi-periodic oscillation of $sim$965 days in all three frequency bands in the light curve of the effectively simultaneous observations, along with strong signals at $sim$1950 d, $sim$1350 d, and $sim$660 d. The periodicity is analyzed with three methods: Data Compensated Discrete Fourier Transform, Generalized Lomb-Scargle Periodogram and Weighted Wavelet Z-transform. These methods are chosen as they have different analysis approaches toward robust measurement of claimed periodicities. The QPO at $965pm 50$ days is found to be significant (at least $3.5sigma$) and is persistent throughout the observation for all three radio frequencies, and the others, which may be harmonics, are comparably significant in at least the 8.0 GHz and 14.5 GHz bands. We briefly discuss plausible explanations for the origin of such long and persistent periodicity.
We report the detection of a probable $gamma$-ray quasi-periodic oscillation (QPO) of around 314 days in the monthly binned 0.1 -- 300 GeV $gamma$-ray {it Fermi}-LAT light curve of the well known BL Lac blazar OJ 287. To identify and quantify the QPO nature of the $gamma$-ray light curve of OJ 287, we used the Lomb-Scargle periodogram (LSP), REDFIT, and weighted wavelet z-transform (WWZ) analyses. We briefly discuss possible emission models for radio-loud active galactic nuclei (AGN) that can explain a $gamma$-ray QPO of such a period in a blazar. Reports of changes in the position of quasi-stationary radio knots over a yearly timescale as well as a strong correlation between gamma-ray and mm-radio emission in previous studies indicate that the signal is probably associated with these knots.
107 - Alok C. Gupta 2020
We reviewed X-ray flux and spectral variability properties studied to date by various X-ray satellites for Mrk 421 and PKS 2155-304, which are TeV emitting blazars. Mrk 421 and PKS 2155-304 are the most X-ray luminous blazars in the northern and sout hern hemispheres, respectively. Blazars show flux and spectral variabilities in the complete electromagnetic spectrum on diverse timescales ranging from a few minutes to hours, days, weeks, months and even several years. The flux and spectral variability on different timescales can be used to constrain the size of the emitting region, estimate the super massive black hole mass, find the dominant emission mechanism in the close vicinity of the super massive black hole, search for quasi-periodic oscillations in time series data and~several other physical parameters of blazars. Flux and spectral variability is also a dominant tool to explain jet as well as disk emission from blazars at different epochs of observations.
We present the results of optical photometric observations of three extreme TeV blazars, 1ES 0229$+$200, 1ES 0414$+$009, and 1ES 2344$+$514, taken with two telescopes (1.3 m Devasthal Fast Optical Telescope, and 1.04 m Sampuranand Telescope) in India and two (1.4 m Milankovi{c} telescope and 60 cm Nedeljkovi{c} telescope) in Serbia during 2013--2019. We investigated their flux and spectral variability on diverse timescales. We examined a total of 36 intraday $R-$band light curves of these blazars for flux variations using the power-enhanced {it F}-test and the nested ANOVA test. No significant intraday variation was detected on 35 nights, and during the one positive detection the amplitude of variability was only 2.26 per cent. On yearly timescales, all three blazars showed clear flux variations in all optical wavebands. The weighted mean optical spectral index ($alpha_{BR}$), calculated using $B - R$ color indices, for 1ES 0229$+$200 was 2.09 $pm$ 0.01. We also estimated the weighted mean optical spectral indices of 0.67 $pm$ 0.01 and 1.37 $pm$ 0.01 for 1ES 0414$+$009, and 1ES 2344$+$514, respectively, by fitting a single power-law ($F_{ u} propto u^{-alpha}$) in their optical ({it VRI}) spectral energy distributions. A bluer-when-brighter trend was only detected in the blazar 1ES 0414$+$009. We briefly discuss different possible physical mechanisms responsible for the observed flux and spectral changes in these blazars on diverse timescales.
We report the results of our optical (VRI) photometric observations of the TeV blazar 1ES 0806$+$524 on 153 nights during 2011-2019 using seven optical telescopes in Europe and Asia. We investigated the variability of the blazar on intraday as well a s on long-term timescales. We examined eighteen intraday light curves for flux and color variations using the most reliable power-enhanced F-test and the nested ANOVA test. Only on one night was a small, but significant, variation found, in both $V$ band and $R$ band light curves. The $V-R$ color index was constant on every one of those nights. Flux density changes of around 80 % were seen over the course of these eight years in multiple bands. We found a weighted mean optical spectral index of 0.639$pm$0.002 during our monitoring period by fitting a power law ($F_{ u} propto u^{-alpha}$) in 23 optical ($VRI$) spectral energy distributions of 1ES 0806$+$524. We discuss different possible mechanisms responsible for blazar variability on diverse timescales.
Characterisation of the long-term variations in the broad line region in a luminous blazar, where Comptonisation of broad-line emission within a relativistic jet is the standard scenario for production of gamma-ray emission that dominates the spectra l energy distribution. We analysed ten years of optical spectroscopic data from the Steward Observatory for the blazar 3C 454.3, as well as gamma-ray data from the Fermi Large Area Telescope (LAT). The optical spectra are dominated by a highly variable non-thermal synchrotron continuum with a prominent Mg II broad emission line. The line flux was obtained by spectral decomposition including significant contribution from the Fe II pseudo-continuum. Three methods were used to characterise variations in the line flux: (1) stacking of the continuum-subtracted spectra, (2) subtracting the running mean light curves calculated for different timescales, and (3) evaluating potential time delays via the discrete correlation function (DCF). Despite very large variations in the gamma-ray and optical continua, the line flux changes only moderately (< 0.1 dex). The data suggest that the line flux responds to a dramatic change in the blazar activity from a very high state in 2010 to a deep low state in 2012. Two interpretations are possible: either the line flux is anti-correlated with the continuum or the increase in the line luminosity is delayed by ~600 days. If this time delay results from the reverberation of poorly constrained accretion disc emission in both the broad-line region (BLR) and the synchrotron emitting blazar zone within a relativistic jet, we would obtain natural estimates for the BLR radius [R_{BLR,MgII} >~ 0.28 pc] and for the supermassive black hole mass [M_SMBH ~ 8.5x10^8 M_sun]. We did not identify additional examples of short-term flares of the line flux, in addition to the previously reported case observed in 2010.
We present X-ray flux and spectral analyses of the three pointed Suzaku observations of the TeV high synchrotron peak blazar Mrk 421 taken throughout its complete operational duration. The observation taken on 5 May 2008 is, at 364.6 kiloseconds (i.e ., 101.3 hours), the longest and most evenly sampled continuous observation of this source, or any blazar, in the X-ray energy 0.8 - 60 keV until now. We found large amplitude intra-day variability in all soft and hard bands in all the light curves. The discrete correction function analysis of the light curves in soft and hard bands peaks on zero lag, showing that the emission in hard and soft bands are cospatial and emitted from the same population of leptons. The hardness ratio plots imply that the source is more variable in the harder bands compared to the softer bands. The source is harder-when-brighter, following the general behavior of high synchrotron peak blazars. Power spectral densities of all three light curves are red noise dominated, with a range of power spectra slopes. If one assumes that the emission originates very close to the central super massive black hole, a crude estimate for its mass, of ~ 4 * 10^{8} M_{odot}, can be made; but if the variability is due to perturbations arising there that are advected into the jet and are thus Doppler boosted, substantially higher masses are consistent with the quickest seen variations. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux and spectral variability.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا