ﻻ يوجد ملخص باللغة العربية
We report the detection of a probable $gamma$-ray quasi-periodic oscillation (QPO) of around 314 days in the monthly binned 0.1 -- 300 GeV $gamma$-ray {it Fermi}-LAT light curve of the well known BL Lac blazar OJ 287. To identify and quantify the QPO nature of the $gamma$-ray light curve of OJ 287, we used the Lomb-Scargle periodogram (LSP), REDFIT, and weighted wavelet z-transform (WWZ) analyses. We briefly discuss possible emission models for radio-loud active galactic nuclei (AGN) that can explain a $gamma$-ray QPO of such a period in a blazar. Reports of changes in the position of quasi-stationary radio knots over a yearly timescale as well as a strong correlation between gamma-ray and mm-radio emission in previous studies indicate that the signal is probably associated with these knots.
The OVRO 40-m telescope has been monitoring the 15 GHz radio flux density of over 1200 blazars since 2008. The 15 GHz light curve of the flat spectrum radio quasar J1359+4011 shows a strong and persistent quasi-periodic oscillation. The time-scale of
Binary black hole (BH) central engine description for the unique blazar OJ 287 predicted that the next secondary BH impact-induced bremsstrahlung flare should peak on 2019 July 31. This prediction was based on detailed general relativistic modeling o
We present a comprehensive analysis of all XMM-Newton spectra of OJ 287 spanning 15 years of X-ray spectroscopy of this bright blazar. We also report the latest results from our dedicated Swift UVOT and XRT monitoring of OJ 287 which started in 2015,
Detection of periodicity in the broad-band non-thermal emission of blazars has so far been proven to be elusive. However, there are a number of scenarios which could lead to quasi-periodic variations in blazar light curves. For example, orbital or th
We analyze the linear polarization of the relativistic jet in BL Lacertae object OJ~287 as revealed by multi-epoch Very Long Baseline Array (VLBA) images at 43 GHz and monitoring observations at optical bands. The electric-vector position angle (EVPA