ترغب بنشر مسار تعليمي؟ اضغط هنا

Artificial neural networks are a valuable tool for radio-frequency (RF) signal classification in many applications, but digitization of analog signals and the use of general purpose hardware non-optimized for training make the process slow and energe tically costly. Recent theoretical work has proposed to use nano-devices called magnetic tunnel junctions, which exhibit intrinsic RF dynamics, to implement in hardware the Multiply and Accumulate (MAC) operation, a key building block of neural networks, directly using analogue RF signals. In this article, we experimentally demonstrate that a magnetic tunnel junction can perform multiplication of RF powers, with tunable positive and negative synaptic weights. Using two magnetic tunnel junctions connected in series we demonstrate the MAC operation and use it for classification of RF signals. These results open the path to embedded systems capable of analyzing RF signals with neural networks directly after the antenna, at low power cost and high speed.
Neuromorphic computing takes inspiration from the brain to create energy efficient hardware for information processing, capable of highly sophisticated tasks. In this article, we make the case that building this new hardware necessitates reinventing electronics. We show that research in physics and material science will be key to create artificial nano-neurons and synapses, to connect them together in huge numbers, to organize them in complex systems, and to compute with them efficiently. We describe how some researchers choose to take inspiration from artificial intelligence to move forward in this direction, whereas others prefer taking inspiration from neuroscience, and we highlight recent striking results obtained with these two approaches. Finally, we discuss the challenges and perspectives in neuromorphic physics, which include developing the algorithms and the hardware hand in hand, making significant advances with small toy systems, as well as building large scale networks.
Magnetic tunnel junctions are nanoscale spintronic devices with microwave generation and detection capabilities. Here we use the rectification effect called spin-diode in a magnetic tunnel junction to wirelessly detect the microwave emission of anoth er junction in the auto-oscillatory regime. We show that the rectified spin-diode voltage measured at the receiving junction end can be reconstructed from the independently measured auto-oscillation and spin diode spectra in each junction. Finally we adapt the auto-oscillator model to the case of spin-torque oscillator and spin-torque diode and we show that accurately reproduces the experimentally observed features. These results will be useful to design circuits and chips based on spintronic nanodevices communicating through microwaves.
Low-energy random number generation is critical for many emerging computing schemes proposed to complement or replace von Neumann architectures. However, current random number generators are always associated with an energy cost that is prohibitive f or these computing schemes. In this paper, we introduce random number bit generation based on specific nanodevices: superparamagnetic tunnel junctions. We experimentally demonstrate high quality random bit generation that represents orders-of-magnitude improvements in energy efficiency compared to current solutions. We show that the random generation speed improves with nanodevice scaling, and investigate the impact of temperature, magnetic field and crosstalk. Finally, we show how alternative computing schemes can be implemented using superparamagentic tunnel junctions as random number generators. These results open the way for fabricating efficient hardware computing devices leveraging stochasticity, and highlight a novel use for emerging nanodevices.
A theoretical study on how synchronization and resonance-like phenomena in superparamagnetic tunnel junctions can be driven by spin-transfer torques is presented. We examine the magnetization of a superparamagnetic free layer that reverses randomly b etween two well-defined orientations due to thermal fluctuations, acting as a stochastic oscillator. When subject to an external ac forcing this system can present stochastic resonance and noise-enhanced synchronization. We focus on the roles of the mutually perpendicular damping-like and field-like torques, showing that the response of the system is very different at low and high-frequencies. We also demonstrate that the field-like torque can increase the efficiency of the current-driven forcing, specially at sub-threshold electric currents. These results can be useful for possible low-power, more energy efficient, applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا