ترغب بنشر مسار تعليمي؟ اضغط هنا

In the current picture of cosmology and astrophysics, the formation and evolution of galaxies is closely linked to that of their dark matter haloes. The best representation of this galaxy-dark matter halo co-evolution is the M* - Mhalo relation. In t his study we investigate how the radio-mode feedback from active galactic nuclei (AGN) affects the M* - Mhalo relation at redshifts 0.08 < z < 1.53. We use a set of 111 radio-selected AGN at 3 GHz VLA-COSMOS within the X-ray galaxy groups in the COSMOS field. We compare these results to the ones of 171 star-forming galaxies (SFGs), using the theoretical relation of Moster et al. (2013). We find that AGN agree within 1% with the Moster et al. (2013) relation, SFGs show an offset of 37%, suggesting that the radio-mode feedback from AGN at a median redshift of ~ 0.5 still plays a significant role in the M* - Mhalo relation.
Aims. We analyze the autocorrelation function of a large contiguous sample of galaxy clusters, the Constrain Dark Energy with X-ray (CODEX) sample, in which we take particular care of cluster definition. These clusters were X-ray selected using the R ASS survey and then identified as galaxy clusters using the code redMaPPer run on the photometry of the SDSS. We develop methods for precisely accounting for the sample selection effects on the clustering and demonstrate their robustness using numerical simulations. Methods. Using the clean CODEX sample, which was obtained by applying a redshift-dependent richness selection, we computed the two-point autocorrelation function of galaxy clusters in the $0.1<z<0.3$ and $0.3<z<0.5$ redshift bins. We compared the bias in the measured correlation function with values obtained in numerical simulations using a similar cluster mass range. Results. By fitting a power law, we measured a correlation length $r_0=18.7 pm 1.1$ and slope $gamma=1.98 pm 0.14$ for the correlation function in the full redshift range. By fixing the other cosmological parameters to their WMAP9 values, we reproduced the observed shape of the correlation function under the following cosmological conditions: $Omega_{m_0}=0.22^{+0.04}_{-0.03}$ and $S_8=sigma_8 (Omega_{m_0} /0.3)^{0.5}=0.85^{+0.10}_{-0.08}$ with estimated additional systematic errors of $sigma_{Omega_{m_0}} = 0.02$ and $sigma_{S_8} = 0.20$. We illustrate the complementarity of clustering constraints by combining them with CODEX cosmological constraints based on the X-ray luminosity function, deriving $Omega_{m_0} = 0.25 pm 0.01$ and $sigma_8 = 0.81^{+0.01}_{-0.02}$ with an estimated additional systematic error of $sigma_{Omega_{m_0}} = 0.07$ and $sigma_{sigma_8} = 0.04$. The mass calibration and statistical quality of the mass tracers are the dominant source of uncertainty.
The on-going X-ray all-sky survey with the eROSITA instrument will yield large galaxy cluster samples, which will bring strong constraints on cosmological parameters. In particular, the survey holds great promise to investigate the tension between CM B and low-redshift measurements. The current bottleneck preventing the full exploitation of the survey data is the systematics associated with the relation between survey observable and halo mass. Numerous recent studies have shown that gas mass and core-excised X-ray luminosity exhibit very low scatter at fixed mass. We propose a new method to reconstruct these quantities from low photon count data and validate the method using extensive eROSITA-like simulations. We find that even near the detection threshold of ~50 counts the core-excised luminosity and the gas mass can be recovered with 20-30% precision, which is substantially less than the scatter of the full integrated X-ray luminosity at fixed mass. When combined with an accurate calibration of the absolute mass scale (e.g. through weak gravitational lensing), our technique reduces the systematics on cosmological parameters induced by the mass calibration.
The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma (SRG) mission will measure the position and properties of about 100,000 clusters of galaxies and 3 million active galactic nuclei over the full sky. To study the statistical properties of this ongoing survey, it is key to estimate the selection function accurately. We create a set of full sky light-cones using the MultiDark and UNIT dark matter only N-body simulations. We present a novel method to predict the X-ray emission of galaxy clusters. Given a set of dark matter halo properties (mass, redshift, ellipticity, offset parameter), we construct an X-ray emissivity profile and image for each halo in the light-cone. We follow the eROSITA scanning strategy to produce a list of X-ray photons on the full sky. We predict scaling relations for the model clusters, which are in good agreement with the literature. The predicted number density of clusters as a function of flux also agrees with previous measurements. Finally, we obtain a scatter of 0.21 (0.07, 0.25) for the X-ray luminosity -- mass (temperature -- mass, luminosity -- temperature) model scaling relations. We provide catalogues with the model photons emitted by clusters and active galactic nuclei. These catalogues will aid the eROSITA end to end simulation flow analysis and in particular the source detection process and cataloguing methods.
One key ingredient in using galaxy clusters (GCs) as a precision cosmological probe in large X-ray surveys is to understand selection effects. The dependence of the X-ray emission on the square of the gas density leads to a predominant role of cool c ores in the detection of GCs. The contribution of cool cores to the X-ray luminosity does not scale with GC mass and cosmology and therefore affects the use of X-ray GCs in producing cosmological constraints. One of the main science goals of the eROSITA mission is to constrain cosmology with a wide X-ray survey. We propose an eROSITA GC detection scheme that avoids the use of X-ray GC centers in detection. We calculate theoretical expectations and characterize the performance of this scheme by simulations. Performing realistic simulations of point sources (PSs) in survey mode we search for spatial scales where the extended signal is uncontaminated by the PS flux. We derive a combination of scales and thresholds, which result in a clean extended source catalog. We design the output of the GC detection which enables calibrating the core-excised luminosity using external mass measurements. We provide a way to incorporate the results of this calibration in the production of final core-excised luminosity. Similarly to other GC detection pipelines, we sample the flux - core radius detection space of our method and find many similarities with the pipeline used in the 400d survey. Both detection methods require large statistics on compact GCs, in order to reduce the contamination from PSs. The benefit of our pipeline consists in the sensitivity to the outer GC shapes, which are characterized by large core sizes with little GC to GC variation at a fixed total mass. GC detection through cluster outskirts improves the GC characterization using eROSITA survey data and is expected to yield well characterized GC catalogs having simple selection functions.
We present the results of a search for galaxy clusters and groups in the $sim2$ square degree of the COSMOS field using all available X-ray observations from the XMM-Newton and Chandra observatories. We reach an X-ray flux limit of $3times10^{-16};er gs;cm^{-2};s^{-1}$ in 0.5--2 keV range, and identify 247 X-ray groups with $M_{200c}=8times10^{12}-3times10^{14};M_{odot}$ at a redshift range of $0.08leq z<1.53$, using the multiband photometric redshift and the master spectroscopic redshift catalogues of the COSMOS. The X-ray centres of groups are determined using high-resolution Chandra imaging. We investigate the relations between the offset of the brightest group galaxies (BGGs) from halo X-ray centre and group properties and compare with predictions from semi-analytic models and hydrodynamical simulations. We find that BGG offset decreases with both increasing halo mass and decreasing redshift with no strong dependence on the X-ray flux and SNR. We show that the BGG offset decreases as a function of increasing magnitude gap with no considerable redshift dependent trend. The stellar mass of BGGs in observations extends over a wider dynamic range compared to model predictions. At $z<0.5$, the central dominant BGGs become more massive than those with large offsets by up to 0.3dex, in agreement with model prediction. The observed and predicted lognormal scatter in the stellar mass of both low- and large-offset BGGs at fixed halo mass is $sim0.3$dex.
We performed a detailed study of the evolution of the star formation rate (SFR) and stellar mass of the brightest group galaxies (BGGs) and their relative contribution to the total baryon budget within $R_{200}$ ($f^{BGG}_{b,200}$). The sample compri ses 407 BGGs selected from X-ray galaxy groups ($M_{200}=10^{12.8}-10^{14} ;M_{odot}$) out to $zsim1.3$ identified in the COSMOS, XMM-LSS, and AEGIS fields. We find that BGGs constitute two distinct populations of quiescent and star-forming galaxies and their mean SFR is $sim2$ dex higher than the median SFR at $ z<1.3 $. Both the mean and the median SFRs decline with time by $>2$ dex. The mean (median) of stellar mass of BGGs has grown by $0.3$ dex since $z=1.3$ to the present day. We show that up to $sim45% $ of the stellar mass growth in a star-forming BGG can be due to its star-formation activity. With respect to $f^{BGG}_{b,200}$, we find it to increase with decreasing redshift by $sim0.35$ dex while decreasing with halo mass in a redshift dependent manner. We show that the slope of the relation between $f^{BGG}_{b,200}$ and halo mass increases negatively with decreasing redshift. This trend is driven by an insufficient star-formation in BGGs, compared to the halo growth rate. We separately show the BGGs with the 20% highest $f^{BGG}_{b,200}$ are generally non-star-forming galaxies and grow in mass by processes not related to star formation (e.g., dry mergers and tidal striping). We present the $ M_star-M_h $ and $ M_star/M_h-M_h $ relations and compare them with semi-analytic model predictions and a number of results from the literature. We quantify the intrinsic scatter in stellar mass of BGGs at fixed halo mass ($sigma_{log M_{star}}$) and find that $sigma_{log M_{star}}$ increases from 0.3 dex at $ zsim0.2 $ to 0.5 dex at $ zsim1.0 $ due to the bimodal distribution of stellar mass.
This study aims to probe the thermodynamic properties of the hot intragroup medium (IGM) plasma in the core regions of the NGC 4636 galaxy group by detailed measurements of several emission lines and their relative intensities. We analyzed deep XMM-N ewton Reflection Grating Spectrometer (RGS) data in five adjacent spectral regions in the central parts of the NGC 4636 galaxy group. We examined the suppression of the Fe xvii resonance line (15.01 {AA}) as compared to the forbidden lines of the same ion (17.05 {AA} and 17.10 {AA}). The presence and radial dependence of the cooling flow was investigated through spectral modeling. In addition, a parallel analysis with deep Chandra Advances CCD Imaging Spectrometer (ACIS) data was conducted to gain additional information about the thermodynamical properties of the IGM. We find that the plasma at the group center to the north shows efficient Fe xvii ion resonant scattering, wheras no resonant scattering was detected at the south side. The regions featuring resonant scattering coincide with those embodying large amounts of cool ($kTlesssim0.4$ keV) gas phases, and the spectral imprints of cooling gas with a total mass deposition rate of $sim0.8$ M$_{odot}$ yr$^{-1}$ within the examined region of $2.4^{prime}times 5.0^{prime}$. We interpret the results as possible evidence of asymmetric turbulence distribution in the NGC 4636 IGM: Turbulence dominates the gas dynamics to the south, while collective gas motions characterize the dynamics to the north. X-ray images show imprints of energetic AGN at both sides, yet we find evidence of turbulence heating at the south and gas cooling at the north of the core. We infer that the observed asymmetry may be the result of the specific observation angle to the source, or arise from the turbulence driven by core sloshing at south side.
297 - Francesco Miniati 2014
We present the results of a pilot XMM-$Newton$ and $Chandra$ program aimed at studying the diffuse intragroup medium (DIM) of optically-selected nearby groups from the Zurinch ENvironmental Study (ZENS) catalog. The groups are in a narrow mass range about $10^{13}M_odot$, a mass scale at which the interplay between the DIM and the group member galaxies is still largely unprobed. X-ray emission from the DIM is detected in the energy band 0.5--2 keV with flux $le 10^{-14}$ erg cm$^{-1}$ s$^{-1}$, which is one order of magnitude fainter than for typical ROSAT groups (RASS). For many groups we set upper limits to the X-ray luminosity, indicating that the detections are likely probing the upper envelope of the X-ray emitting groups. We find evidence for our optically selected groups to be under-luminous with respect to predictions from X-ray scaling relations. X-ray mass determinations are in best agreement with those based on the member galaxies bulge luminosity, followed by their total optical luminosity and velocity dispersion. We measure a stellar mass fraction with a median value of about 1$%$, with a contribution from the most massive galaxies between 30 to 50 %. Optical and X-ray data give often complementary answers concerning the dynamical state of the groups, and are essential for a complete picture of the system. Extending this pilot program to a larger sample of groups is mandatory to unveil any imprint of interaction between member galaxies and DIM in halo potentials of key importance for environmentally-driven galactic evolution.
The backbone of the large-scale structure of the Universe is determined by processes on a cosmological scale and by the gravitational interaction of the dominant dark matter. However, the mobile baryon population shapes the appearance of these struct ures. Theory predicts that most of the baryons reside in vast unvirialized filamentary structures that connect galaxy groups and clusters, but the observational evidence is currently lacking. Because the majority of the baryons are supposed to exist in a large-scale, hot and dilute gaseous phase, X-rays provide the ideal tool to progress our understanding. Observations with the Athena+ X-ray Integral Field Unit will reveal the location, chemical composition, physical state and dynamics of the active population of baryons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا