ترغب بنشر مسار تعليمي؟ اضغط هنا

Clustering of CODEX clusters

46   0   0.0 ( 0 )
 نشر من قبل Valtteri Lindholm
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. We analyze the autocorrelation function of a large contiguous sample of galaxy clusters, the Constrain Dark Energy with X-ray (CODEX) sample, in which we take particular care of cluster definition. These clusters were X-ray selected using the RASS survey and then identified as galaxy clusters using the code redMaPPer run on the photometry of the SDSS. We develop methods for precisely accounting for the sample selection effects on the clustering and demonstrate their robustness using numerical simulations. Methods. Using the clean CODEX sample, which was obtained by applying a redshift-dependent richness selection, we computed the two-point autocorrelation function of galaxy clusters in the $0.1<z<0.3$ and $0.3<z<0.5$ redshift bins. We compared the bias in the measured correlation function with values obtained in numerical simulations using a similar cluster mass range. Results. By fitting a power law, we measured a correlation length $r_0=18.7 pm 1.1$ and slope $gamma=1.98 pm 0.14$ for the correlation function in the full redshift range. By fixing the other cosmological parameters to their WMAP9 values, we reproduced the observed shape of the correlation function under the following cosmological conditions: $Omega_{m_0}=0.22^{+0.04}_{-0.03}$ and $S_8=sigma_8 (Omega_{m_0} /0.3)^{0.5}=0.85^{+0.10}_{-0.08}$ with estimated additional systematic errors of $sigma_{Omega_{m_0}} = 0.02$ and $sigma_{S_8} = 0.20$. We illustrate the complementarity of clustering constraints by combining them with CODEX cosmological constraints based on the X-ray luminosity function, deriving $Omega_{m_0} = 0.25 pm 0.01$ and $sigma_8 = 0.81^{+0.01}_{-0.02}$ with an estimated additional systematic error of $sigma_{Omega_{m_0}} = 0.07$ and $sigma_{sigma_8} = 0.04$. The mass calibration and statistical quality of the mass tracers are the dominant source of uncertainty.

قيم البحث

اقرأ أيضاً

Large area catalogs of galaxy clusters constructed from ROSAT All Sky Survey provide the base for our knowledge on the population of clusters thanks to the long-term multiwavelength efforts on their follow-up. Advent of large area photometric surveys superseding in depth previous all-sky data allows us to revisit the construction of X-ray cluster catalogs, extending the study to lower cluster masses and to higher redshifts and to provide the modelling of the selection function. We perform a wavelet detection of X-ray sources and make extensive simulations of the detection of clusters in the RASS data. We assign an optical richness to each of the 24,788 detected X-ray sources in the 10,382 square degrees of SDSS BOSS area, using redMaPPer version 5.2. We name this survey COnstrain Dark Energy with X-ray (CODEX) clusters. We show that there is no obvious separation of sources on galaxy clusters and AGN, based on distribution of systems on their richness. This is a combination of increasing number of galaxy groups and their selection as identification of an X-ray sources either by chance or due to groups hosting an AGN. To clean the sample, we use a cut on the optical richness at the level corresponding to the 10% completeness of the survey and include it into the modelling of cluster selection function. We present the X-ray catalog extending to a redshift of 0.6 down to X-ray fluxes of $10^{-13}$ ergs s$^{-1}$ cm$^{-2}$. We provide the modelling of the sample selection and discuss the redshift evolution of the high end of the X-ray luminosity function (XLF). Our results on $z<0.3$ XLF are in agreement with previous studies, while we provide new constraints on the $0.3<z<0.6$ XLF. We find a lack of strong redshift evolution of the XLF, provide exact modeling of the effect of low number statistics and AGN contamination and present the resulting constraints on the flat $Lambda$CDM.
The COnstrain Dark Energy with X-ray clusters (CODEX) sample contains the largest flux limited sample of X-ray clusters at $0.35 < z < 0.65$. It was selected from ROSAT data in the 10,000 square degrees of overlap with BOSS, mapping a total number of 2770 high-z galaxy clusters. We present here the full results of the CFHT CODEX program on cluster mass measurement, including a reanalysis of CFHTLS Wide data, with 25 individual lensing-constrained cluster masses. We employ $lensfit$ shape measurement and perform a conservative colour-space selection and weighting of background galaxies. Using the combination of shape noise and an analytic covariance for intrinsic variations of cluster profiles at fixed mass due to large scale structure, miscentring, and variations in concentration and ellipticity, we determine the likelihood of the observed shear signal as a function of true mass for each cluster. We combine 25 individual cluster mass likelihoods in a Bayesian hierarchical scheme with the inclusion of optical and X-ray selection functions to derive constraints on the slope $alpha$, normalization $beta$, and scatter $sigma_{ln lambda | mu}$ of our richness-mass scaling relation model in log-space: $left<ln lambda | mu right> = alpha mu + beta$, with $mu = ln (M_{200c}/M_{mathrm{piv}})$, and $M_{mathrm{piv}} = 10^{14.81} M_{odot}$. We find a slope $alpha = 0.49^{+0.20}_{-0.15}$, normalization $ exp(beta) = 84.0^{+9.2}_{-14.8}$ and $sigma_{ln lambda | mu} = 0.17^{+0.13}_{-0.09}$ using CFHT richness estimates. In comparison to other weak lensing richness-mass relations, we find the normalization of the richness statistically agreeing with the normalization of other scaling relations from a broad redshift range ($0.0<z<0.65$) and with different cluster selection (X-ray, Sunyaev-Zeldovich, and optical).
91 - R. Capasso , J. J. Mohr , A. Saro 2018
We use galaxy dynamical information to calibrate the richness-mass scaling relation of a sample of 428 galaxy clusters that are members of the CODEX sample with redshifts up to z~0.7. These clusters were X-ray selected using the ROSAT All-Sky Survey (RASS), cross-matched to associated systems in the redMaPPer catalog from the Sloan Digital Sky Survey. The spectroscopic sample we analyze was obtained in the SPIDERS program and contains ~7800 red member galaxies. Adopting NFW mass and galaxy density profiles and a broad range of orbital anisotropy profiles, we use the Jeans equation to calculate halo masses. Modeling the scaling relation as $lambda propto text{A}_{lambda} {M_{text{200c}}}^{text{B}_{lambda}} ({1+z})^{gamma_{lambda}}$, we find the parameter constraints $text{A}_{lambda}=38.6^{+3.1}_{-4.1}pm3.9$, $text{B}_{lambda}=0.99^{+0.06}_{-0.07}pm0.04$, and $gamma_{lambda}=-1.13^{+0.32}_{-0.34}pm0.49$. We find good agreement with previously published mass trends with the exception of those from stacked weak lensing analyses. We note that although the lensing analyses failed to account for the Eddington bias, this is not enough to explain the differences. We suggest that differences in the levels of contamination between pure redMaPPer and RASS+redMaPPer samples could well contribute to these differences. The redshift trend we measure is more negative than but statistically consistent with previous results. We suggest that our measured redshift trend reflects a change in the cluster galaxy red sequence fraction with redshift, noting that the trend we measure is consistent with but somewhat stronger than an independently measured redshift trend in the red sequence fraction. We also examine the impact of a plausible model of correlated scatter in X-ray luminosity and optical richness, showing it has negligible impact on our results.
Galaxy clusters trace the highest density peaks in the large-scale structure of the Universe. Their clustering provides a powerful probe that can be exploited in combination with cluster mass measurements to strengthen the cosmological constraints pr ovided by cluster number counts. We investigate the spatial properties of a homogeneous sample of X-ray selected galaxy clusters from the XXL survey, the largest programme carried out by the XMM-Newton satellite. The measurements are compared to $Lambda$-cold dark matter predictions, and used in combination with self-calibrated mass scaling relations to constrain the effective bias of the sample, $b_{eff}$, and the matter density contrast, $Omega_{rm M}$. We measured the angle-averaged two-point correlation function of the XXL cluster sample. The analysed catalogue consists of $182$ X-ray selected clusters from the XXL second data release, with median redshift $langle z rangle=0.317$ and median mass $langle M_{500} ranglesimeq1.3cdot10^{14} M_odot$. A Markov chain Monte Carlo analysis is performed to extract cosmological constraints using a likelihood function constructed to be independent of the cluster selection function. Modelling the redshift-space clustering in the scale range $10<r,[$Mpch$]<40$, we obtain $Omega_{rm M}=0.27_{-0.04}^{+0.06}$ and $b_{eff}=2.73_{-0.20}^{+0.18}$. This is the first time the two-point correlation function of an X-ray selected cluster catalogue at such relatively high redshifts and low masses has been measured. The XXL cluster clustering appears fully consistent with standard cosmological predictions. The analysis presented in this work demonstrates the feasibility of a cosmological exploitation of the XXL cluster clustering, paving the way for a combined analysis of XXL cluster number counts and clustering.
CODEX and ESPRESSO are concepts for ultra-stable, high-resolution spectrographs at the E-ELT and VLT, respectively. Both instruments are well motivated by distinct sets of science drivers. However, ESPRESSO will also be a stepping stone towards CODEX both in a scientific as well as in a technical sense. Here we discuss this role of ESPRESSO with respect to one of the most exciting CODEX science cases, i.e. the dynamical determination of the cosmic expansion history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا