ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze the quantum evolution of a weakly nonlinear resonator due to a classical near-resonant drive and damping. The resonator nonlinearity leads to squeezing and heating of the resonator state. Using a hybrid phase-space--Fock-space representati on for the resonator state within the Gaussian approximation, we derive evolution equations for the four parameters characterizing the Gaussian state. Numerical solution of these four ordinary differential equations is much simpler and faster than simulation of the full density matrix evolution, while providing good accuracy for the system analysis during transients and in the steady state. We show that steady-state squeezing of the resonator state is limited by 3 dB; however, this limit can be exceeded during transients.
In modern circuit QED architectures, superconducting transmon qubits are measured via the state-dependent phase and amplitude shift of a microwave field leaking from a coupled resonator. Determining this shift requires integrating the field quadratur es for a nonzero duration, which can permit unwanted concurrent evolution. Here we investigate such dynamical degradation of the measurement fidelity caused by a detuned neighboring qubit. We find that in realistic parameter regimes, where the qubit ensemble-dephasing rate is slower than the qubit-qubit detuning, the joint qubit-qubit eigenstates are better discriminated by measurement than the bare states. Furthermore, we show that when the resonator leaks much more slowly than the qubit-qubit detuning, the measurement tracks the joint eigenstates nearly adiabatically. However, the measurement process also causes rare quantum jumps between the eigenstates. The rate of these jumps becomes significant if the resonator decay is comparable to or faster than the qubit-qubit detuning, thus significantly degrading the measurement fidelity in a manner reminiscent of energy relaxation processes.
We show how capacitance can be calculated simply and efficiently for electrodes cut in a 2-dimensional ground plane. These results are in good agreement with exact formulas and numerical simulations.
We consider the discrimination of two pure quantum states with three allowed outcomes: a correct guess, an incorrect guess, and a non-guess. To find an optimum measurement procedure, we define a tunable cost that penalizes the incorrect guess and non -guess outcomes. Minimizing this cost over all projective measurements produces a rigorous cost bound that includes the usual Helstrom discrimination bound as a special case. We then show that nonprojective measurements can outperform this modified Helstrom bound for certain choices of cost function. The Ivanovic-Dieks-Peres unambiguous state discrimination protocol is recovered as a special case of this improvement. Notably, while the cost advantage of the latter protocol is destroyed with the introduction of any amount of experimental noise, other choices of cost function have optima for which nonprojective measurements robustly show an appreciable, and thus experimentally measurable, cost advantage. Such an experiment would be an unambiguous demonstration of a benefit from nonprojective measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا