ترغب بنشر مسار تعليمي؟ اضغط هنا

Violating the Modified Helstrom Bound with Nonprojective Measurements

188   0   0.0 ( 0 )
 نشر من قبل Justin Dressel
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the discrimination of two pure quantum states with three allowed outcomes: a correct guess, an incorrect guess, and a non-guess. To find an optimum measurement procedure, we define a tunable cost that penalizes the incorrect guess and non-guess outcomes. Minimizing this cost over all projective measurements produces a rigorous cost bound that includes the usual Helstrom discrimination bound as a special case. We then show that nonprojective measurements can outperform this modified Helstrom bound for certain choices of cost function. The Ivanovic-Dieks-Peres unambiguous state discrimination protocol is recovered as a special case of this improvement. Notably, while the cost advantage of the latter protocol is destroyed with the introduction of any amount of experimental noise, other choices of cost function have optima for which nonprojective measurements robustly show an appreciable, and thus experimentally measurable, cost advantage. Such an experiment would be an unambiguous demonstration of a benefit from nonprojective measurements.

قيم البحث

اقرأ أيضاً

Quantum state discrimination between two wave functions on a ring is considered. The optimal minimum-error probability is known to be given by the Helstrom bound. A new strategy is introduced by inserting instantaneously two impenetrable barriers div iding the ring into two chambers. In the process, the candidate wave functions, as the insertion points become nodes, get entangled with the barriers and can, if judiciously chosen, be distinguished with smaller error probability. As a consequence, the Helstrom bound under idealised conditions can be violated.
Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.
Finding the optimal attainable precisions in quantum multiparameter metrology is a non trivial problem. One approach to tackling this problem involves the computation of bounds which impose limits on how accurately we can estimate certain physical qu antities. One such bound is the Holevo Cramer Rao bound on the trace of the mean squared error matrix. The Holevo bound is an asymptotically achievable bound when one allows for any measurement strategy, including collective measurements on many copies of the probe. In this work we introduce a tighter bound for estimating multiple parameters simultaneously when performing separable measurements on finite copies of the probe. This makes it more relevant in terms of experimental accessibility. We show that this bound can be efficiently computed by casting it as a semidefinite program. We illustrate our bound with several examples of collective measurements on finite copies of the probe. These results have implications for the necessary requirements to saturate the Holevo bound.
It is challenged only recently that the precision attainable in any measurement of a physical parameter is fundamentally limited by the quantum Cram{e}r-Rao Bound (QCRB). Here, targeting at measuring parameters in strongly dissipative systems, we pro pose an innovative measurement scheme called {it dissipative adiabatic measurement} and theoretically show that it can beat the QCRB. Unlike projective measurements, our measurement scheme, though consuming more time, does not collapse the measured state and, more importantly, yields the expectation value of an observable as its measurement outcome, which is directly connected to the parameter of interest. Such a direct connection {allows to extract} the value of the parameter from the measurement outcomes in a straightforward manner, with no fundamental limitation on precision in principle. Our findings not only provide a marked insight into quantum metrology but also are highly useful in dissipative quantum information processing.
SU(1,1) interferometers, based on the usage of nonlinear elements, are superior to passive interferometers in phase sensitivity. However, the SU(1,1) interferometer cannot make full use of photons carrying phase information as the second nonlinear el ement annihilates some of the photons inside. Here, we focus on improving phase sensitivity and propose a new protocol based on a modified SU(1,1) interferometer, where the second nonlinear element is replaced by a beam splitter. We utilize two coherent states as inputs and implement balanced homodyne measurement at the output. Our analysis suggests that the protocol we propose can achieve sub-shot-noise-limited phase sensitivity and is robust against photon loss and background noise. Our work is important for practical quantum metrology using SU(1,1) interferometers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا