ﻻ يوجد ملخص باللغة العربية
In modern circuit QED architectures, superconducting transmon qubits are measured via the state-dependent phase and amplitude shift of a microwave field leaking from a coupled resonator. Determining this shift requires integrating the field quadratures for a nonzero duration, which can permit unwanted concurrent evolution. Here we investigate such dynamical degradation of the measurement fidelity caused by a detuned neighboring qubit. We find that in realistic parameter regimes, where the qubit ensemble-dephasing rate is slower than the qubit-qubit detuning, the joint qubit-qubit eigenstates are better discriminated by measurement than the bare states. Furthermore, we show that when the resonator leaks much more slowly than the qubit-qubit detuning, the measurement tracks the joint eigenstates nearly adiabatically. However, the measurement process also causes rare quantum jumps between the eigenstates. The rate of these jumps becomes significant if the resonator decay is comparable to or faster than the qubit-qubit detuning, thus significantly degrading the measurement fidelity in a manner reminiscent of energy relaxation processes.
We study ultrastrong-coupling quantum-phase-transition phenomena in a few-qubit system. In the one-qubit case, three second-order transitions occur and the Goldstone mode emerges under the condition of ultrastrong-coupling strength. Moreover, a first
Using circuit QED, we consider the measurement of a superconducting transmon qubit via a coupled microwave resonator. For ideally dispersive coupling, ringing up the resonator produces coherent states with frequencies matched to transmon energy state
We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to depha
Developing efficient framework for quantum measurements is of essential importance to quantum science and technology. In this work, for the important superconducting circuit-QED setup, we present a rigorous and analytic solution for the effective qua
We study a circuit QED setup where multiple superconducting qubits are ultrastrongly coupled to a single radio-frequency resonator. In this extreme parameter regime of cavity QED the dynamics of the electromagnetic mode is very slow compared to all o