ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate numerically the time dependence of window overlaps in a three-dimensional Ising spin glass below its transition temperature after a rapid quench. Using an efficient GPU implementation, we are able to study large systems up to lateral l ength $L=128$ and up to long times of $t=10^8$ sweeps. We find that the data scales according to the ratio of the window size $W$ to the non-equilibrium coherence length $xi(t)$. We also show a substantial change in behavior if the system is run for long enough that it globally equilibrates, i.e. $xi(t) approx L/2$, where $L$ is the lattice size. This indicates that the local behavior of a spin glass depends on the spin configurations (and presumably also the bonds) far away. We compare with similar simulations for the Ising ferromagnet. Based on these results, we speculate on a connection between the non-equilibrium dynamics discussed here and averages computed theoretically using the metastate.
We present results from Monte Carlo simulations to test for ultrametricity and clustering properties in spin-glass models. By using a one-dimensional Ising spin glass with random power-law interactions where the universality class of the model can be tuned by changing the power-law exponent, we find signatures of ultrametric behavior both in the mean-field and non-mean-field universality classes for large linear system sizes. Furthermore, we confirm the existence of nontrivial connected components in phase space via a clustering analysis of configurations.
The concept of replica symmetry breaking found in the solution of the mean-field Sherrington-Kirkpatrick spin-glass model has been applied to a variety of problems in science ranging from biological to computational and even financial analysis. Thus it is of paramount importance to understand which predictions of the mean-field solution apply to non-mean-field systems, such as realistic short-range spin-glass models. The one-dimensional spin glass with random power-law interactions promises to be an ideal test-bed to answer this question: Not only can large system sizes-which are usually a shortcoming in simulations of high-dimensional short-range system-be studied, by tuning the power-law exponent of the interactions the universality class of the model can be continuously tuned from the mean-field to the short-range universality class. We present details of the model, as well as recent applications to some questions of the physics of spin glasses. First, we study the existence of a spin-glass state in an external field. In addition, we discuss the existence of ultrametricity in short-range spin glasses. Finally, because the range of interactions can be changed, the model is a formidable test-bed for optimization algorithms.
We use the parabolic wave equation to study the propagation of x-rays in tapered waveguides by numercial simulation and optimization. The goal of the study is to elucidate how beam concentration can be best achieved in x-ray optical nanostructures. S uch optimized waveguides can e.g. be used to investigate single biomolecules. Here, we compare tapering geometries, which can be parametrized by linear and third-order (Bezier-type) functions and can be fabricated using standard e-beam litography units. These geometries can be described in two and four-dimensional parameter spaces, respectively. In both geometries, we observe a rugged structure of the optimization problems ``gain landscape. Thus, the optimization of x-ray nanostructures in general will be a highly nontrivial optimization problem.
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems wit h a Gaussian distribution of the random fields. Our algorithm is based on an approach of Frontera and Vives which, in some cases, does not yield the true first excited states. Using the corrected algorithm, we find that the order-disorder phase transition for three dimensions is visible via crossings of the excitations-energy curves for different system sizes, while in two-dimensions these crossings converge to zero disorder. Furthermore, we obtain in three dimensions a fractal dimension of the excitations cluster of d_s=2.42(2). We also provide analytical droplet arguments to understand the behavior of the excitation energies for small and large disorder as well as close to the critical point.
We study numerically the cluster structure of random ensembles of two NP-hard optimization problems originating in computational complexity, the vertex-cover problem and the number partitioning problem. We use branch-and-bound type algorithms to obta in exact solutions of these problems for moderate system sizes. Using two methods, direct neighborhood-based clustering and hierarchical clustering, we investigate the structure of the solution space. The main result is that the correspondence between solution structure and the phase diagrams of the problems is not unique. Namely, for vertex cover we observe a drastic change of the solution space from large single clusters to multiple nested levels of clusters. In contrast, for the number-partitioning problem, the phase space looks always very simple, similar to a random distribution of the lowest-energy configurations. This holds in the ``easy/solvable phase as well as in the ``hard/unsolvable phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا