ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - Alejandro Ayala 2015
We study momentum imbalance as a function of jet asymmetry in high-energy heavy-ion collisions. To implement parton production during the collision, we include all Leading Order (LO) $2to 2$ and $2to 3$ parton processes in pQCD. The produced partons lose energy within the quark gluon plasma and hadronize collinearly when they leave it. The energy and momentum deposited into the plasma is described using linear viscous hydrodynamics with a constant energy loss per unit length and a total energy loss given by a Gaussian probability centered around a mean value $bar{mathcal{E}}$ and a half-width $Delta{mathcal{E}}$. We argue that the shape of the asymmetry observed by the CERN-CMS Collaboration can indeed be attributed to parton energy loss in the medium and that a good description of data is achieved when one includes a slight enhancement coming from the contribution of $2to 3$ parton processes that modifies the asymmetry distribution of the dijet events. We compare our results to CMS data for the most central collisions and study different values for $bar{mathcal{E}}$ and $Delta{mathcal{E}}$.
We consider the evolution of critical temperature both for the formation of a pion condensate as well as for the chiral transition, from the perspective of the linear sigma model, in the background of a magnetic field. We developed the discussion for the pion condensate in one loop approximation for the effective potential getting magnetic catalysis for high values of B, i.e. a raising of the critical temperature with the magnetic field. For the analysis of the chiral restoration, we go beyond this approximation, by taking one loop thermo-magnetic corrections to the couplings as well as plasma screening effects for the bosons masses, expressed through the resumation of ring diagrams. Here we found the opposite behavior, i.e. inverse magnetica catalysis, i.e. a decreasing of the chiral critical temperature as function of the intensity of the magnetic field, which seems to be in agreement with recent results form the lattice community.
We write down explicit expressions for the $x$-evolution (equivalent to energy or rapidity evolution) of $2 n$ ($n = 1, 2, ...$) Wilson lines using the JIMWLK equation and the Color Glass Condensate formalism. We investigate the equation in the weak gluon field limit (linear regime) by expanding the Wilson lines in powers of the gluon field and show that it reduces to the BJKP equation describing the evolution of a state of $2 n$ Reggeized gluons with energy. We also make available for download a {it Mathematica} program which provides this expression for any value of $n$.
We study the effects of primordial magnetic fields on the inflationary potential in the context of a warm inflation scenario. The model, based on global supersymmetry with a new-inflation-type potential and a coupling between the inflaton and a heavy intermediate superfield, is already known to preserve the flatness required for slow-roll conditions even after including thermal contributions. Here we show that the magnetic field makes the potential even flatter, retarding the transition and rendering it smoother.
We compute the critical temperature for the chiral transition in the background of a magnetic field in the linear sigma model, including the quark contribution and the thermo-magnetic effects induced on the coupling constants at one loop level. We sh ow that the critical temperature decreases as a function of the field strength. The effect of fermions on the critical temperature is small and the main effect on this observable comes from the charged pions. The findings support the idea that the anticatalysis phenomenon receives a contribution due only to quiral symmetry effects independent of the deconfinement transition.
We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, ma gnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.
The suppression of the nuclear modification factor for heavy flavor hadrons is usually attributed to the energy loss of heavy quarks propagating in a QCD plasma. Nevertheless it is puzzling that the suppression is as strong as for light flavors. We s how that when accounting for the quark momentum shift associated to the opening of the recombination/coalescence channel for hadron production in the plasma, it is not necessary to invoke such strong energy loss. This shift is expressed in terms of an increase of the heavy baryon to meson ratio in nuclear with respect to proton collisions. When this mechanism is included along with a moderate energy loss, data from RHIC and LHC for the nuclear modification factor of electrons coming from heavy flavor decays as well as of charm mesons, can be reasonably described.
123 - Alejandro Ayala 2011
In high energy heavy ion collisions at RHIC there are important aspects of the medium induced dynamics, that are still not well understood. In particular, there is a broadening and even a double hump structure of the away-side peak appearing in azimu thal correlation studies in Au+Au collisions which is absent in p+p collisions at the same energies. These features are already present but suppressed in p+p collisions: 2 to 3 parton processes produce such structures but are suppressed with respect to 2 to 2 processes. We argue that in A+A collisions the different geometry for the trajectories of 3 as opposed to 2 particles in the final state, together with the medium induced energy loss effects on the different cross sections, create a scenario that enhances processes with 3 particles in the final state, which gives on average this double hump structure.
65 - Alejandro Ayala 2009
We compare the azimuthal correlations arising from three and two hadron production in high energy proton-proton and nucleus-nucleus collisions at sqrt{s_{NN}}=200 GeV, using the leading order matrix elements for two-to-three and two-to-two parton-pro cesses in perturbative QCD. We first compute the two and three hadron production cross sections in mid-rapidity proton-proton collisions. Then we consider Au + Au collisions including parton energy loss using the modified fragmentation function approach. By examining the geometrical paths the hard partons follow through the medium, we show that the two away-side partons produced in two-to-three processes have in average a smaller and a greater path length than the average path length of the away-side parton in two-to-two processes. Therefore there is a large probability that in the former processes one of the particles escapes while the other gets absorbed. This effect leads to an enhancement in the azimuthal correlations of the two-to-three with respect to the two-to-two parton-processes when comparing to the same processes in proton-proton collisions since in average the particle with the shortest path length looses less energy with respect to the away side particle in two-to-two processes. We argue that this phenomenon may be responsible for the shape of the away-side in azimuthal correlations observed in mid-rapidity Au + Au collisions at RHIC.
Employing the Schwingers proper-time method, we calculate the $<bar{psi} psi>$-condensate for massive Dirac fermions of charge $e$ interacting with a uniform magnetic field in a heat bath. We present general results for arbitrary hierarchy of the ene rgy scales involved, namely, the fermion mass $m$, the magnetic field strength $sqrt{eB}$ and temperature $T$. Moreover, we study particular regimes in detail and reproduce some of the results calculated or anticipated earlier in the literature. We also discuss possible applications of our findings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا