ﻻ يوجد ملخص باللغة العربية
The suppression of the nuclear modification factor for heavy flavor hadrons is usually attributed to the energy loss of heavy quarks propagating in a QCD plasma. Nevertheless it is puzzling that the suppression is as strong as for light flavors. We show that when accounting for the quark momentum shift associated to the opening of the recombination/coalescence channel for hadron production in the plasma, it is not necessary to invoke such strong energy loss. This shift is expressed in terms of an increase of the heavy baryon to meson ratio in nuclear with respect to proton collisions. When this mechanism is included along with a moderate energy loss, data from RHIC and LHC for the nuclear modification factor of electrons coming from heavy flavor decays as well as of charm mesons, can be reasonably described.
Relativistic heavy ion collisions, which are performed at large experimental programs such as Relativistic Heavy Ion Colliders (RHIC) STAR experiment and the Large Hadron Colliders (LHC) experiments, can create an extremely hot and dense state of the
The nuclear modification factor is derived using Tsallis non-extensive statistics in relaxation time approximation. The variation of nuclear modification factor with transverse momentum for different values of non-extensive parameter, $q$, is also ob
Heavy mesons in nuclear matter and nuclei are analyzed within different frameworks, paying a special attention to unitarized coupled-channel approaches. Possible experimental signatures of the properties of these mesons in matter are addressed, in pa
We compute masses of positive parity spin-$1/2$ and $3/2$ baryons composed of $u$, $d$, $s$, $c$ and $b$ quarks in a quark-diaquark picture. The mathematical foundation for this analysis is implemented through a symmetry-preserving Schwinger-Dyson eq
In this talk we present a short review of recent developments concerning the interaction of vector mesons with baryons and with nuclei. We begin with the hidden gauge formalism for the interaction of vector mesons, then review results for vector bary