ترغب بنشر مسار تعليمي؟ اضغط هنا

The scarcity of parallel data is a major obstacle for training high-quality machine translation systems for low-resource languages. Fortunately, some low-resource languages are linguistically related or similar to high-resource languages; these relat ed languages may share many lexical or syntactic structures. In this work, we exploit this linguistic overlap to facilitate translating to and from a low-resource language with only monolingual data, in addition to any parallel data in the related high-resource language. Our method, NMT-Adapt, combines denoising autoencoding, back-translation and adversarial objectives to utilize monolingual data for low-resource adaptation. We experiment on 7 languages from three different language families and show that our technique significantly improves translation into low-resource language compared to other translation baselines.
Cross-lingual named-entity lexica are an important resource to multilingual NLP tasks such as machine translation and cross-lingual wikification. While knowledge bases contain a large number of entities in high-resource languages such as English and French, corresponding entities for lower-resource languages are often missing. To address this, we propose Lexical-Semantic-Phonetic Align (LSP-Align), a technique to automatically mine cross-lingual entity lexica from mined web data. We demonstrate LSP-Align outperforms baselines at extracting cross-lingual entity pairs and mine 164 million entity pairs from 120 different languages aligned with English. We release these cross-lingual entity pairs along with the massively multilingual tagged named entity corpus as a resource to the NLP community.
Quality estimation aims to measure the quality of translated content without access to a reference translation. This is crucial for machine translation systems in real-world scenarios where high-quality translation is needed. While many approaches ex ist for quality estimation, they are based on supervised machine learning requiring costly human labelled data. As an alternative, we propose a technique that does not rely on examples from human-annotators and instead uses synthetic training data. We train off-the-shelf architectures for supervised quality estimation on our synthetic data and show that the resulting models achieve comparable performance to models trained on human-annotated data, both for sentence and word-level prediction.
Most neural machine translation systems are built upon subword units extracted by methods such as Byte-Pair Encoding (BPE) or wordpiece. However, the choice of number of merge operations is generally made by following existing recipes. In this paper, we conduct a systematic exploration on different numbers of BPE merge operations to understand how it interacts with the model architecture, the strategy to build vocabularies and the language pair. Our exploration could provide guidance for selecting proper BPE configurations in the future. Most prominently: we show that for LSTM-based architectures, it is necessary to experiment with a wide range of different BPE operations as there is no typical optimal BPE configuration, whereas for Transformer architectures, smaller BPE size tends to be a typically optimal choice. We urge the community to make prudent choices with subword merge operations, as our experiments indicate that a sub-optimal BPE configuration alone could easily reduce the system performance by 3-4 BLEU points.
We explore training attention-based encoder-decoder ASR in low-resource settings. These models perform poorly when trained on small amounts of transcribed speech, in part because they depend on having sufficient target-side text to train the attentio n and decoder networks. In this paper we address this shortcoming by pretraining our network parameters using only text-based data and transcribed speech from other languages. We analyze the relative contributions of both sources of data. Across 3 test languages, our text-based approach resulted in a 20% average relative improvement over a text-based augmentation technique without pretraining. Using transcribed speech from nearby languages gives a further 20-30% relative reduction in character error rate.
We present a new end-to-end architecture for automatic speech recognition (ASR) that can be trained using emph{symbolic} input in addition to the traditional acoustic input. This architecture utilizes two separate encoders: one for acoustic input and another for symbolic input, both sharing the attention and decoder parameters. We call this architecture a multi-modal data augmentation network (MMDA), as it can support multi-modal (acoustic and symbolic) input and enables seamless mixing of large text datasets with significantly smaller transcribed speech corpora during training. We study different ways of transforming large text corpora into a symbolic form suitable for training our MMDA network. Our best MMDA setup obtains small improvements on character error rate (CER), and as much as 7-10% relative word error rate (WER) improvement over a baseline both with and without an external language model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا