ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider zero temperature behavior of dynamic response functions of 1D systems near edges of support in momentum-energy plane $(k, omega).$ The description of the singularities of dynamic response functions near an edge $epsilon(k)$ is given by th e effective Hamiltonian of a mobile impurity moving in a Luttinger liquid. For Galilean-invariant systems, we relate the parameters of such an effective Hamiltonian to the properties of the function $epsilon (k).$ This allows us to express the exponents which characterize singular response functions of spinless bosonic or fermionic liquids in terms of $epsilon(k)$ and Luttinger liquid parameters for any $k.$ For an antiferromagnetic Heisenberg spin-1/2 chain in a zero magnetic field, SU(2) invariance fixes the exponents from purely phenomenological considerations.
One-dimensional quantum fluids are conventionally described by using an effective hydrodynamic approach known as Luttinger liquid theory. As the principal simplification, a generic spectrum of the constituent particles is replaced by a linear one, wh ich leads to a linear hydrodynamic theory. We show that to describe the measurable dynamic response functions one needs to take into account the nonlinearity of the generic spectrum and thus of the resulting quantum hydrodynamic theory. This nonlinearity leads, for example, to a qualitative change in the behavior of the spectral function. The universal theory developed in this article is applicable to a wide class of one-dimensional fermionic, bosonic, and spin systems.
The spectral function and dynamic structure factor of bosons interacting by contact repulsion and confined to one dimension exhibit power-law singularities along the dispersion curves of the collective modes. We find the corresponding exponents exact ly, by relating them to the known Bethe ansatz solution of the Lieb-Liniger model. The found exponents vary considerably with the interaction strength and momentum. Remarkably, the Luttinger liquid theory predictions for the exponents fail even at low energies, once the immediate vicinities of the edges are considered.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا