ﻻ يوجد ملخص باللغة العربية
The spectral function and dynamic structure factor of bosons interacting by contact repulsion and confined to one dimension exhibit power-law singularities along the dispersion curves of the collective modes. We find the corresponding exponents exactly, by relating them to the known Bethe ansatz solution of the Lieb-Liniger model. The found exponents vary considerably with the interaction strength and momentum. Remarkably, the Luttinger liquid theory predictions for the exponents fail even at low energies, once the immediate vicinities of the edges are considered.
In this paper we study nonequilibrium dynamics of one dimensional Bose gas from the general perspective of dynamics of integrable systems. After outlining and critically reviewing methods based on inverse scattering transform, intertwining operators,
The Lieb-Liniger model is a prototypical integrable model and has been turned into the benchmark physics in theoretical and numerical investigations of low dimensional quantum systems. In this note, we present various methods for calculating local
The exact solution of the 1D interacting mixed Bose-Fermi gas is used to calculate ground-state properties both for finite systems and in the thermodynamic limit. The quasimomentum distribution, ground-state energy and generalized velocities are obta
We investigate the 1D interacting two-component Fermi gas with arbitrary polarization. Exact results for the ground state energy, quasimomentum distribution functions, spin velocity and charge velocity reveal subtle polarization dependent quantum effects.
Recent theoretical and experimental results demonstrate a close connection between the super Tonks-Girardeau (sTG) gas and a 1D hard sphere Bose (HSB) gas with hard sphere diameter nearly equal to the 1D scattering length $a_{1D}$ of the sTG gas, a h