ﻻ يوجد ملخص باللغة العربية
One-dimensional quantum fluids are conventionally described by using an effective hydrodynamic approach known as Luttinger liquid theory. As the principal simplification, a generic spectrum of the constituent particles is replaced by a linear one, which leads to a linear hydrodynamic theory. We show that to describe the measurable dynamic response functions one needs to take into account the nonlinearity of the generic spectrum and thus of the resulting quantum hydrodynamic theory. This nonlinearity leads, for example, to a qualitative change in the behavior of the spectral function. The universal theory developed in this article is applicable to a wide class of one-dimensional fermionic, bosonic, and spin systems.
We study systems of bosons whose low-energy excitations are located along a spherical submanifold of momentum space. We argue for the existence of gapless phases which we dub Bose-Luttinger liquids, which in some respects can be regarded as boson
We calculate the damping gamma_q of collective density oscillations (zero sound) in a one-dimensional Fermi gas with dimensionless forward scattering interaction F and quadratic energy dispersion k^2 / 2 m at zero temperature. For wave-vectors | q| /
We derive an analytic expression for the zero temperature Fourier transform of the density-density correlation function of a multicomponent Luttinger liquid with different velocities. By employing Schwinger identity and a generalized Feynman identity
We derive generalized Kronig identities expressing quadratic fermionic terms including momentum transfer to bosonic operators and use them to obtain the exact solution for one-dimensional fermionic models with linear dispersion in the presence of pos
We use Wilsons weak coupling ``momentum shell renormalization group method to show that two-particle interaction terms commonly neglected in bosonization of one-dimensional correlated electron systems with open boundaries are indeed irrelevant in the