ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrocytes play a central role in inducing concerted phase synchronized neural-wave patterns inside the brain. In this article, we demonstrate that injected radio-frequency signal in underlying heavy metal layer of spin-orbit torque oscillator neuron s mimic the neuron phase synchronization effect realized by glial cells. Potential application of such phase coupling effects is illustrated in the context of a temporal binding problem. We also present the design of a coupled neuron-synapse-astrocyte network enabled by compact neuromimetic devices by combining the concepts of local spike-timing dependent plasticity and astrocyte induced neural phase synchrony.
Accurate online classification of disturbance events in a transmission network is an important part of wide-area monitoring. Although many conventional machine learning techniques are very successful in classifying events, they rely on extracting inf ormation from PMU data at control centers and processing them through CPU/GPUs, which are highly inefficient in terms of energy consumption. To solve this challenge without compromising accuracy, this paper presents a novel methodology based on event-driven neuromorphic computing architecture for classification of power system disturbances. A Spiking Neural Network (SNN)-based computing framework is proposed, which exploits sparsity in disturbances and promotes local event driven operation for unsupervised learning and inference from incoming data. Spatio-temporal information of PMU signals is first extracted and encoded into spike trains and classification is achieved with SNN-based supervised and unsupervised learning framework. Moreover, a QR decomposition-based selection technique is proposed to identify signals participating in the low rank subspace of multiple disturbance events. Performance of the proposed method is validated on data collected from a 16-machine, 5-area New England-New York system.
116 - Sen Lu , Abhronil Sengupta 2020
On-chip edge intelligence has necessitated the exploration of algorithmic techniques to reduce the compute requirements of current machine learning frameworks. This work aims to bridge the recent algorithmic progress in training Binary Neural Network s and Spiking Neural Networks - both of which are driven by the same motivation and yet synergies between the two have not been fully explored. We show that training Spiking Neural Networks in the extreme quantization regime results in near full precision accuracies on large-scale datasets like CIFAR-$100$ and ImageNet. An important implication of this work is that Binary Spiking Neural Networks can be enabled by In-Memory hardware accelerators catered for Binary Neural Networks without suffering any accuracy degradation due to binarization. We utilize standard training techniques for non-spiking networks to generate our spiking networks by conversion process and also perform an extensive empirical analysis and explore simple design-time and run-time optimization techniques for reducing inference latency of spiking networks (both for binary and full-precision models) by an order of magnitude over prior work.
Emulating various facets of computing principles of the brain can potentially lead to the development of neuro-computers that are able to exhibit brain-like cognitive capabilities. In this letter, we propose a magnetoelectronic neuron that utilizes n oise as a computing resource and is able to encode information over time through the independent control of external voltage signals. We extensively characterize the device operation using simulations and demonstrate its suitability for neuromorphic computing platforms performing temporal information encoding.
Resistive crossbars designed with non-volatile memory devices have emerged as promising building blocks for Deep Neural Network (DNN) hardware, due to their ability to compactly and efficiently realize vector-matrix multiplication (VMM), the dominant computational kernel in DNNs. However, a key challenge with resistive crossbars is that they suffer from a range of device and circuit level non-idealities such as interconnect parasitics, peripheral circuits, sneak paths, and process variations. These non-idealities can lead to errors in VMMs, eventually degrading the DNNs accuracy. It is therefore critical to study the impact of crossbar non-idealities on the accuracy of large-scale DNNs. However, this is challenging because existing device and circuit models are too slow to use in application-level evaluations. We present RxNN, a fast and accurate simulation framework to evaluate large-scale DNNs on resistive crossbar systems. RxNN splits and maps the computations involved in each DNN layer into crossbar operations, and evaluates them using a Fast Crossbar Model (FCM) that accurately captures the errors arising due to crossbar non-idealities while being four-to-five orders of magnitude faster than circuit simulation. FCM models a crossbar-based VMM operation using three stages - non-linear models for the input and output peripheral circuits (DACs and ADCs), and an equivalent non-ideal conductance matrix for the core crossbar array. We implement RxNN by extending the Caffe machine learning framework and use it to evaluate a suite of six large-scale DNNs developed for the ImageNet Challenge. Our experiments reveal that resistive crossbar non-idealities can lead to significant accuracy degradations (9.6%-32%) for these large-scale DNNs. To the best of our knowledge, this work is the first quantitative evaluation of the accuracy of large-scale DNNs on resistive crossbar based hardware.
Over the past few years, Spiking Neural Networks (SNNs) have become popular as a possible pathway to enable low-power event-driven neuromorphic hardware. However, their application in machine learning have largely been limited to very shallow neural network architectures for simple problems. In this paper, we propose a novel algorithmic technique for generating an SNN with a deep architecture, and demonstrate its effectiveness on complex visual recognition problems such as CIFAR-10 and ImageNet. Our technique applies to both VGG and Residual network architectures, with significantly better accuracy than the state-of-the-art. Finally, we present analysis of the sparse event-driven computations to demonstrate reduced hardware overhead when operating in the spiking domain.
Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform everyday. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.
Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving brainlike compact and energy-effcient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.
Probabilistic inference from real-time input data is becoming increasingly popular and may be one of the potential pathways at enabling cognitive intelligence. As a matter of fact, preliminary research has revealed that stochastic functionalities als o underlie the spiking behavior of neurons in cortical microcircuits of the human brain. In tune with such observations, neuromorphic and other unconventional computing platforms have recently started adopting the usage of computational units that generate outputs probabilistically, depending on the magnitude of the input stimulus. In this work, we experimentally demonstrate a spintronic device that offers a direct mapping to the functionality of such a controllable stochastic switching element. We show that the probabilistic switching of Ta/CoFeB/MgO heterostructures in presence of spin-orbit torque and thermal noise can be harnessed to enable probabilistic inference in a plethora of unconventional computing scenarios. This work can potentially pave the way for hardware that directly mimics the computational units of Bayesian inference.
In this paper, we propose a Spin-Torque (ST) based sensing scheme that can enable energy efficient multi-bit long distance interconnect architectures. Current-mode interconnects have recently been proposed to overcome the performance degradations ass ociated with conventional voltage mode Copper (Cu) interconnects. However, the performance of current mode interconnects are limited by analog current sensing transceivers and equalization circuits. As a solution, we propose the use of ST based receivers that use Magnetic Tunnel Junctions (MTJ) and simple digital components for current-to-voltage conversion and do not require analog transceivers. We incorporate Spin-Hall Metal (SHM) in our design to achieve high speed sensing. We show both single and multi-bit operations that reveal major benefits at higher speeds. Our simulation results show that the proposed technique consumes only 3.93-4.72 fJ/bit/mm energy while operating at 1-2 Gbits/sec; which is considerably better than existing charge based interconnects. In addition, Voltage Controlled Magnetic Anisotropy (VCMA) can reduce the required current at the sensor. With the inclusion of VCMA, the energy consumption can be further reduced to 2.02-4.02 fJ/bit/mm
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا